These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Spectral redemption in clustering sparse networks. Krzakala F; Moore C; Mossel E; Neeman J; Sly A; Zdeborová L; Zhang P Proc Natl Acad Sci U S A; 2013 Dec; 110(52):20935-40. PubMed ID: 24277835 [TBL] [Abstract][Full Text] [Related]
4. A seed-expanding method based on random walks for community detection in networks with ambiguous community structures. Su Y; Wang B; Zhang X Sci Rep; 2017 Feb; 7():41830. PubMed ID: 28157183 [TBL] [Abstract][Full Text] [Related]
5. Communities in C. elegans connectome through the prism of non-backtracking walks. Onuchin AA; Chernizova AV; Lebedev MA; Polovnikov KE Sci Rep; 2023 Dec; 13(1):22923. PubMed ID: 38129512 [TBL] [Abstract][Full Text] [Related]
6. The localization of non-backtracking centrality in networks and its physical consequences. Pastor-Satorras R; Castellano C Sci Rep; 2020 Dec; 10(1):21639. PubMed ID: 33303816 [TBL] [Abstract][Full Text] [Related]
7. Scalable detection of statistically significant communities and hierarchies, using message passing for modularity. Zhang P; Moore C Proc Natl Acad Sci U S A; 2014 Dec; 111(51):18144-9. PubMed ID: 25489096 [TBL] [Abstract][Full Text] [Related]
8. Beyond non-backtracking: non-cycling network centrality measures. Arrigo F; Higham DJ; Noferini V Proc Math Phys Eng Sci; 2020 Mar; 476(2235):20190653. PubMed ID: 32269487 [TBL] [Abstract][Full Text] [Related]
9. Analysis of node2vec random walks on networks. Meng L; Masuda N Proc Math Phys Eng Sci; 2020 Nov; 476(2243):20200447. PubMed ID: 33362414 [TBL] [Abstract][Full Text] [Related]
10. Spectral characterization of hierarchical network modularity and limits of modularity detection. Sarkar S; Henderson JA; Robinson PA PLoS One; 2013; 8(1):e54383. PubMed ID: 23382895 [TBL] [Abstract][Full Text] [Related]
11. Topologically biased random walk and community finding in networks. Zlatić V; Gabrielli A; Caldarelli G Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 2):066109. PubMed ID: 21230707 [TBL] [Abstract][Full Text] [Related]
12. Benchmark graphs for testing community detection algorithms. Lancichinetti A; Fortunato S; Radicchi F Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046110. PubMed ID: 18999496 [TBL] [Abstract][Full Text] [Related]
13. Significant communities in large sparse networks. Mirshahvalad A; Lindholm J; Derlén M; Rosvall M PLoS One; 2012; 7(3):e33721. PubMed ID: 22479433 [TBL] [Abstract][Full Text] [Related]
14. Using higher-order Markov models to reveal flow-based communities in networks. Salnikov V; Schaub MT; Lambiotte R Sci Rep; 2016 Mar; 6():23194. PubMed ID: 27029508 [TBL] [Abstract][Full Text] [Related]
15. Community extraction for social networks. Zhao Y; Levina E; Zhu J Proc Natl Acad Sci U S A; 2011 May; 108(18):7321-6. PubMed ID: 21502538 [TBL] [Abstract][Full Text] [Related]
16. Distinct types of eigenvector localization in networks. Pastor-Satorras R; Castellano C Sci Rep; 2016 Jan; 6():18847. PubMed ID: 26754565 [TBL] [Abstract][Full Text] [Related]
17. Communities and bottlenecks: trees and treelike networks have high modularity. Bagrow JP Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066118. PubMed ID: 23005173 [TBL] [Abstract][Full Text] [Related]
18. Spectral estimation for detecting low-dimensional structure in networks using arbitrary null models. Humphries MD; Caballero JA; Evans M; Maggi S; Singh A PLoS One; 2021; 16(7):e0254057. PubMed ID: 34214126 [TBL] [Abstract][Full Text] [Related]
19. Finding Communities by Their Centers. Chen Y; Zhao P; Li P; Zhang K; Zhang J Sci Rep; 2016 Apr; 6():24017. PubMed ID: 27053090 [TBL] [Abstract][Full Text] [Related]
20. Identifying and characterizing nodes important to community structure using the spectrum of the graph. Wang Y; Di Z; Fan Y PLoS One; 2011; 6(11):e27418. PubMed ID: 22110644 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]