These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 25742983)

  • 1. Narrowing the Expertise Gap for Predicting Intracranial Aneurysm Hemodynamics: Impact of Solver Numerics versus Mesh and Time-Step Resolution.
    Khan MO; Valen-Sendstad K; Steinman DA
    AJNR Am J Neuroradiol; 2015 Jul; 36(7):1310-6. PubMed ID: 25742983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mind the gap: impact of computational fluid dynamics solution strategy on prediction of intracranial aneurysm hemodynamics and rupture status indicators.
    Valen-Sendstad K; Steinman DA
    AJNR Am J Neuroradiol; 2014 Mar; 35(3):536-43. PubMed ID: 24231854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transitional hemodynamics in intracranial aneurysms - Comparative velocity investigations with high resolution lattice Boltzmann simulations, normal resolution ANSYS simulations, and MR imaging.
    Jain K; Jiang J; Strother C; Mardal KA
    Med Phys; 2016 Nov; 43(11):6186. PubMed ID: 27806613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the prevalence of flow instabilities from high-fidelity computational fluid dynamics of intracranial bifurcation aneurysms.
    Khan MO; Toro Arana V; Najafi M; MacDonald DE; Natarajan T; Valen-Sendstad K; Steinman DA
    J Biomech; 2021 Oct; 127():110683. PubMed ID: 34454331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids.
    Frolov SV; Sindeev SV; Liepsch D; Balasso A
    Technol Health Care; 2016 May; 24(3):317-33. PubMed ID: 26835725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Computational Fluid Dynamics Rupture Challenge 2013--Phase II: Variability of Hemodynamic Simulations in Two Intracranial Aneurysms.
    Berg P; Roloff C; Beuing O; Voss S; Sugiyama S; Aristokleous N; Anayiotos AS; Ashton N; Revell A; Bressloff NW; Brown AG; Chung BJ; Cebral JR; Copelli G; Fu W; Qiao A; Geers AJ; Hodis S; Dragomir-Daescu D; Nordahl E; Bora Suzen Y; Owais Khan M; Valen-Sendstad K; Kono K; Menon PG; Albal PG; Mierka O; Münster R; Morales HG; Bonnefous O; Osman J; Goubergrits L; Pallares J; Cito S; Passalacqua A; Piskin S; Pekkan K; Ramalho S; Marques N; Sanchi S; Schumacher KR; Sturgeon J; Švihlová H; Hron J; Usera G; Mendina M; Xiang J; Meng H; Steinman DA; Janiga G
    J Biomech Eng; 2015 Dec; 137(12):121008. PubMed ID: 26473395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Automated Workflow for Hemodynamic Computations in Cerebral Aneurysms.
    Nita CI; Suzuki T; Itu LM; Mihalef V; Takao H; Murayama Y; Sharma P; Redel T; Rapaka S
    Comput Math Methods Med; 2020; 2020():5954617. PubMed ID: 32655681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-Newtonian versus numerical rheology: Practical impact of shear-thinning on the prediction of stable and unstable flows in intracranial aneurysms.
    Khan MO; Steinman DA; Valen-Sendstad K
    Int J Numer Method Biomed Eng; 2017 Jul; 33(7):. PubMed ID: 27696717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis.
    Omodaka S; Sugiyama S; Inoue T; Funamoto K; Fujimura M; Shimizu H; Hayase T; Takahashi A; Tominaga T
    Cerebrovasc Dis; 2012; 34(2):121-9. PubMed ID: 22965244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling hemodynamics in intracranial aneurysms: Comparing accuracy of CFD solvers based on finite element and finite volume schemes.
    Botti L; Paliwal N; Conti P; Antiga L; Meng H
    Int J Numer Method Biomed Eng; 2018 Sep; 34(9):e3111. PubMed ID: 29858530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution computational fluid dynamics detects flow instabilities in the carotid siphon: implications for aneurysm initiation and rupture?
    Valen-Sendstad K; Piccinelli M; Steinman DA
    J Biomech; 2014 Sep; 47(12):3210-6. PubMed ID: 25062933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow Instability Detected by High-Resolution Computational Fluid Dynamics in Fifty-Six Middle Cerebral Artery Aneurysms.
    Varble N; Xiang J; Lin N; Levy E; Meng H
    J Biomech Eng; 2016 Jun; 138(6):061009. PubMed ID: 27109451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the Hemodynamics in Residual Cavities of Intracranial Aneurysm after Coil Embolization with Combined Computational Flow Dynamics and Silent Magnetic Resonance Angiography.
    Suzuki T; Genkai N; Nomura T; Abe H
    J Stroke Cerebrovasc Dis; 2020 Dec; 29(12):105290. PubMed ID: 32992205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Approximating hemodynamics of cerebral aneurysms with steady flow simulations.
    Geers AJ; Larrabide I; Morales HG; Frangi AF
    J Biomech; 2014 Jan; 47(1):178-85. PubMed ID: 24262847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of inlet waveforms on computational hemodynamics of patient-specific intracranial aneurysms.
    Xiang J; Siddiqui AH; Meng H
    J Biomech; 2014 Dec; 47(16):3882-90. PubMed ID: 25446264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemodynamic differences between unstable and stable unruptured aneurysms independent of size and location: a pilot study.
    Brinjikji W; Chung BJ; Jimenez C; Putman C; Kallmes DF; Cebral JR
    J Neurointerv Surg; 2017 Apr; 9(4):376-380. PubMed ID: 27048958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemodynamic and morphological characteristics of a growing cerebral aneurysm.
    Dabagh M; Nair P; Gounley J; Frakes D; Gonzalez LF; Randles A
    Neurosurg Focus; 2019 Jul; 47(1):E13. PubMed ID: 31261117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical investigation of the hemodynamics in anatomically realistic lateral cerebral aneurysms.
    Valencia A; Munizaga J; Rivera R; Bravo E
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2616-21. PubMed ID: 21096182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cerebral aneurysm blood flow simulations are sensitive to basic solver settings.
    Dennis KD; Kallmes DF; Dragomir-Daescu D
    J Biomech; 2017 May; 57():46-53. PubMed ID: 28395878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel multiblock immersed boundary method for large eddy simulation of complex arterial hemodynamics.
    Anupindi K; Delorme Y; Shetty DA; Frankel SH
    J Comput Phys; 2013 Dec; 254():. PubMed ID: 24179251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.