These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 25743113)
1. Accelerator mass spectrometry analysis of ultra-low-level (129)I in carrier-free AgI-AgCl sputter targets. Liu Q; Hou X; Zhou W; Fu Y J Am Soc Mass Spectrom; 2015 May; 26(5):725-33. PubMed ID: 25743113 [TBL] [Abstract][Full Text] [Related]
2. Determination of ultralow level 129I/127I in natural samples by separation of microgram carrier free iodine and accelerator mass spectrometry detection. Hou X; Zhou W; Chen N; Zhang L; Liu Q; Luo M; Fan Y; Liang W; Fu Y Anal Chem; 2010 Sep; 82(18):7713-21. PubMed ID: 20735008 [TBL] [Abstract][Full Text] [Related]
3. Speciation analysis of 129I in seawater by carrier-free AgI-AgCl coprecipitation and accelerator mass spectrometric measurement. Luo M; Hou X; He C; Liu Q; Fan Y Anal Chem; 2013 Apr; 85(7):3715-22. PubMed ID: 23472747 [TBL] [Abstract][Full Text] [Related]
4. Accurate determination of ¹²⁹I concentrations and ¹²⁹I/¹³⁷Cs ratios in spent nuclear resins by Accelerator Mass Spectrometry. Nottoli E; Bienvenu P; Labet A; Bourlès D; Arnold M; Bertaux M Appl Radiat Isot; 2014 Apr; 86():90-6. PubMed ID: 24525301 [TBL] [Abstract][Full Text] [Related]
5. Comparison of partial structures of melts of superionic AgI and CuI and non-superionic AgCl. Kawakita Y; Tahara S; Fujii H; Kohara S; Takeda S J Phys Condens Matter; 2007 Aug; 19(33):335201. PubMed ID: 21694124 [TBL] [Abstract][Full Text] [Related]
6. Light induced suppression of sulfur in a cesium sputter ion source. Martschini M; Rohlén J; Andersson P; Golser R; Hanstorp D; Lindahl AO; Priller A; Steier P; Forstner O Int J Mass Spectrom; 2012 Apr; 315(4):55-59. PubMed ID: 23576897 [TBL] [Abstract][Full Text] [Related]
7. Ultra-trace analysis of 36Cl by accelerator mass spectrometry: an interlaboratory study. Merchel S; Bremser W; Alfimov V; Arnold M; Aumaître G; Benedetti L; Bourlès DL; Caffee M; Fifield LK; Finkel RC; Freeman SP; Martschini M; Matsushi Y; Rood DH; Sasa K; Steier P; Takahashi T; Tamari M; Tims SG; Tosaki Y; Wilcken KM; Xu S Anal Bioanal Chem; 2011 Jul; 400(9):3125-32. PubMed ID: 21533641 [TBL] [Abstract][Full Text] [Related]
8. Sputter sample preparation for ion beam delivery of radium-223 at ATLAS. McLain J; Gott M; Greene J; Scott R; Vondrasek R Rev Sci Instrum; 2023 Jun; 94(6):. PubMed ID: 37862488 [TBL] [Abstract][Full Text] [Related]
9. Highly efficient hydroxyapatite/TiO2 composites covered by silver halides as E. coli disinfectant under visible light and dark media. Azimzadehirani M; Elahifard M; Haghighi S; Gholami M Photochem Photobiol Sci; 2013 Oct; 12(10):1787-94. PubMed ID: 23824359 [TBL] [Abstract][Full Text] [Related]
10. Accelerator mass spectrometry measurement of 240Pu/239Pu isotope ratios in Novaya Zemlya and Kara Sea sediments. Oughton DH; Skipperud L; Fifield LK; Cresswell RG; Salbu B; Day P Appl Radiat Isot; 2004; 61(2-3):249-53. PubMed ID: 15177353 [TBL] [Abstract][Full Text] [Related]
11. Investigation of factors that affect the sensitivity of accelerator mass spectrometry for cosmogenic 10Be and 26Al isotope analysis. Hunt AL; Larsen J; Bierman PR; Petrucci GA Anal Chem; 2008 Mar; 80(5):1656-63. PubMed ID: 18229892 [TBL] [Abstract][Full Text] [Related]
12. Labeling of graphene oxide with [ Song H; Wang G; Wang J; Yang X; Wei H; Yang Y Appl Radiat Isot; 2023 Aug; 198():110862. PubMed ID: 37235986 [TBL] [Abstract][Full Text] [Related]
13. Mass spectrometry with accelerators. Litherland AE; Zhao XL; Kieser WE Mass Spectrom Rev; 2011; 30(6):1037-72. PubMed ID: 22031277 [TBL] [Abstract][Full Text] [Related]
14. Attomole detection of 3H in biological samples using accelerator mass spectrometry: application in low-dose, dual-isotope tracer studies in conjunction with 14C accelerator mass spectrometry. Dingley KH; Roberts ML; Velsko CA; Turteltaub KW Chem Res Toxicol; 1998 Oct; 11(10):1217-22. PubMed ID: 9778319 [TBL] [Abstract][Full Text] [Related]
15. The structure of molten AgCl, AgI and their eutectic mixture as studied by molecular dynamics simulations of polarizable ion model potentials. Alcaraz O; Bitrián V; Trullàs J J Chem Phys; 2011 Jan; 134(1):014505. PubMed ID: 21219005 [TBL] [Abstract][Full Text] [Related]
16. HOI versus HOIO selectivity of a molten-type AgI electrode. Holló G; Kály-Kullai K; Lawson TB; Noszticzius Z; Wittmann M; Muntean N; Furrow SD; Schmitz G J Phys Chem A; 2014 Jul; 118(26):4670-9. PubMed ID: 24892210 [TBL] [Abstract][Full Text] [Related]
17. Ultra-low-level determination of (236)U in IAEA marine reference materials by ICPMS and AMS. Lee SH; Povinec PP; Wyse E; Hotchkis MA Appl Radiat Isot; 2008; 66(6-7):823-8. PubMed ID: 18343143 [TBL] [Abstract][Full Text] [Related]
18. Accelerator mass spectrometry of small biological samples. Salehpour M; Forsgard N; Possnert G Rapid Commun Mass Spectrom; 2008 Dec; 22(23):3928-34. PubMed ID: 18980253 [TBL] [Abstract][Full Text] [Related]
19. Accelerator mass spectrometry 14C determination in CO2 produced from laser decomposition of aragonite. Rosenheim BE; Thorrold SR; Roberts ML Rapid Commun Mass Spectrom; 2008 Nov; 22(21):3443-9. PubMed ID: 18844243 [TBL] [Abstract][Full Text] [Related]
20. Separation of no-carrier-added 52Mn from bulk chromium: a simulation study for accelerator mass spectrometry measurement of 53Mn. Lahiri S; Nayak D; Korschinek G Anal Chem; 2006 Nov; 78(21):7517-21. PubMed ID: 17073421 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]