BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

837 related articles for article (PubMed ID: 25743786)

  • 21. FnCpf1: a novel and efficient genome editing tool for Saccharomyces cerevisiae.
    Swiat MA; Dashko S; den Ridder M; Wijsman M; van der Oost J; Daran JM; Daran-Lapujade P
    Nucleic Acids Res; 2017 Dec; 45(21):12585-12598. PubMed ID: 29106617
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CReasPy-Cloning: A Method for Simultaneous Cloning and Engineering of Megabase-Sized Genomes in Yeast Using the CRISPR-Cas9 System.
    Ruiz E; Talenton V; Dubrana MP; Guesdon G; Lluch-Senar M; Salin F; Sirand-Pugnet P; Arfi Y; Lartigue C
    ACS Synth Biol; 2019 Nov; 8(11):2547-2557. PubMed ID: 31663334
    [TBL] [Abstract][Full Text] [Related]  

  • 23. One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces.
    Huang H; Zheng G; Jiang W; Hu H; Lu Y
    Acta Biochim Biophys Sin (Shanghai); 2015 Apr; 47(4):231-43. PubMed ID: 25739462
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae.
    Shi S; Liang Y; Zhang MM; Ang EL; Zhao H
    Metab Eng; 2016 Jan; 33():19-27. PubMed ID: 26546089
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas9 enzyme.
    Michno JM; Wang X; Liu J; Curtin SJ; Kono TJ; Stupar RM
    GM Crops Food; 2015; 6(4):243-52. PubMed ID: 26479970
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CAR1 deletion by CRISPR/Cas9 reduces formation of ethyl carbamate from ethanol fermentation by Saccharomyces cerevisiae.
    Chin YW; Kang WK; Jang HW; Turner TL; Kim HJ
    J Ind Microbiol Biotechnol; 2016 Nov; 43(11):1517-1525. PubMed ID: 27573438
    [TBL] [Abstract][Full Text] [Related]  

  • 27. pCEC-red: a new vector for easier and faster CRISPR-Cas9 genome editing in Saccharomyces cerevisiae.
    Maestroni L; Butti P; Senatore VG; Branduardi P
    FEMS Yeast Res; 2023 Jan; 23():. PubMed ID: 36640150
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Elimination of the cryptic plasmid in Leuconostoc citreum by CRISPR/Cas9 system.
    Jang YJ; Seo SO; Kim SA; Li L; Kim TJ; Kim SC; Jin YS; Han NS
    J Biotechnol; 2017 Jun; 251():151-155. PubMed ID: 28433723
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The no-SCAR (Scarless Cas9 Assisted Recombineering) system for genome editing in Escherichia coli.
    Reisch CR; Prather KL
    Sci Rep; 2015 Oct; 5():15096. PubMed ID: 26463009
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficient Genome Editing in Clostridium cellulolyticum via CRISPR-Cas9 Nickase.
    Xu T; Li Y; Shi Z; Hemme CL; Li Y; Zhu Y; Van Nostrand JD; He Z; Zhou J
    Appl Environ Microbiol; 2015 Jul; 81(13):4423-31. PubMed ID: 25911483
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of a CRISPR/Cas9-Based Tool for Gene Deletion in
    Tran VG; Cao M; Fatma Z; Song X; Zhao H
    mSphere; 2019 Jun; 4(3):. PubMed ID: 31243078
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Method for Multiplexed Integration of Synergistic Alleles and Metabolic Pathways in Yeasts via CRISPR-Cas9.
    Walter JM; Schubert MG; Kung SH; Hawkins K; Platt DM; Hernday AD; Mahatdejkul-Meadows T; Szeto W; Chandran SS; Newman JD; Horwitz AA
    Methods Mol Biol; 2019; 2049():39-72. PubMed ID: 31602604
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Single Cas9-VPR Nuclease for Simultaneous Gene Activation, Repression, and Editing in
    Dong C; Jiang L; Xu S; Huang L; Cai J; Lian J; Xu Z
    ACS Synth Biol; 2020 Sep; 9(9):2252-2257. PubMed ID: 32841560
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9.
    Nakade S; Tsubota T; Sakane Y; Kume S; Sakamoto N; Obara M; Daimon T; Sezutsu H; Yamamoto T; Sakuma T; Suzuki KT
    Nat Commun; 2014 Nov; 5():5560. PubMed ID: 25410609
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae.
    Bao Z; Xiao H; Liang J; Zhang L; Xiong X; Sun N; Si T; Zhao H
    ACS Synth Biol; 2015 May; 4(5):585-94. PubMed ID: 25207793
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CasEMBLR: Cas9-Facilitated Multiloci Genomic Integration of in Vivo Assembled DNA Parts in Saccharomyces cerevisiae.
    Jakočiūnas T; Rajkumar AS; Zhang J; Arsovska D; Rodriguez A; Jendresen CB; Skjødt ML; Nielsen AT; Borodina I; Jensen MK; Keasling JD
    ACS Synth Biol; 2015 Nov; 4(11):1226-34. PubMed ID: 25781611
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiple genome modifications by the CRISPR/Cas9 system in zebrafish.
    Ota S; Hisano Y; Ikawa Y; Kawahara A
    Genes Cells; 2014 Jul; 19(7):555-64. PubMed ID: 24848337
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The yeast platform engineered for synthetic gRNA-landing pads enables multiple gene integrations by a single gRNA/Cas9 system.
    Baek S; Utomo JC; Lee JY; Dalal K; Yoon YJ; Ro DK
    Metab Eng; 2021 Mar; 64():111-121. PubMed ID: 33549837
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CRISPR-Cas9 as a Powerful Tool for Efficient Creation of Oncolytic Viruses.
    Yuan M; Webb E; Lemoine NR; Wang Y
    Viruses; 2016 Mar; 8(3):72. PubMed ID: 26959050
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Targeted genome modifications in soybean with CRISPR/Cas9.
    Jacobs TB; LaFayette PR; Schmitz RJ; Parrott WA
    BMC Biotechnol; 2015 Mar; 15():16. PubMed ID: 25879861
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 42.