BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

838 related articles for article (PubMed ID: 25743786)

  • 41. Cpf1-assisted efficient genomic integration of in vivo assembled DNA parts in Saccharomyces cerevisiae.
    Li ZH; Liu M; Wang FQ; Wei DZ
    Biotechnol Lett; 2018 Aug; 40(8):1253-1261. PubMed ID: 29797148
    [TBL] [Abstract][Full Text] [Related]  

  • 42. CRISPR/Cas9-Mediated Genome Editing in Soybean Hairy Roots.
    Cai Y; Chen L; Liu X; Sun S; Wu C; Jiang B; Han T; Hou W
    PLoS One; 2015; 10(8):e0136064. PubMed ID: 26284791
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Genome engineering using CRISPR-Cas9 system.
    Cong L; Zhang F
    Methods Mol Biol; 2015; 1239():197-217. PubMed ID: 25408407
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Plasmids for in vivo construction of integrative Candida albicans vectors in Saccharomyces cerevisiae.
    Vieira N; Pereira F; Casal M; Brown AJ; Paiva S; Johansson B
    Yeast; 2010 Nov; 27(11):933-9. PubMed ID: 20602447
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Preloading budding yeast with all-in-one CRISPR/Cas9 vectors for easy and high-efficient genome editing.
    Degreif D; Kremenovic M; Geiger T; Bertl A
    J Biol Methods; 2018; 5(3):e98. PubMed ID: 31453248
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9.
    Du H; Zeng X; Zhao M; Cui X; Wang Q; Yang H; Cheng H; Yu D
    J Biotechnol; 2016 Jan; 217():90-7. PubMed ID: 26603121
    [TBL] [Abstract][Full Text] [Related]  

  • 47. CRISPR/Cas9-RNA interference system for combinatorial metabolic engineering of Saccharomyces cerevisiae.
    Kildegaard KR; Tramontin LRR; Chekina K; Li M; Goedecke TJ; Kristensen M; Borodina I
    Yeast; 2019 May; 36(5):237-247. PubMed ID: 30953378
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A simple and rapid approach to manipulate pseudorabies virus genome by CRISPR/Cas9 system.
    Xu A; Qin C; Lang Y; Wang M; Lin M; Li C; Zhang R; Tang J
    Biotechnol Lett; 2015 Jun; 37(6):1265-72. PubMed ID: 25724716
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A CRISPR/Cas9 toolkit for multiplex genome editing in plants.
    Xing HL; Dong L; Wang ZP; Zhang HY; Han CY; Liu B; Wang XC; Chen QJ
    BMC Plant Biol; 2014 Nov; 14():327. PubMed ID: 25432517
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Metabolic engineering of Saccharomyces cerevisiae using the CRISPR/Cas9 system to minimize ethyl carbamate accumulation during Chinese rice wine fermentation.
    Wu D; Xie W; Li X; Cai G; Lu J; Xie G
    Appl Microbiol Biotechnol; 2020 May; 104(10):4435-4444. PubMed ID: 32215703
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A CRISPR/Cas9-based exploration into the elusive mechanism for lactate export in Saccharomyces cerevisiae.
    Mans R; Hassing EJ; Wijsman M; Giezekamp A; Pronk JT; Daran JM; van Maris AJA
    FEMS Yeast Res; 2017 Dec; 17(8):. PubMed ID: 29145596
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Construction of integrative plasmids suitable for genetic modification of industrial strains of Saccharomyces cerevisiae.
    Leite FC; Dos Anjos RS; Basilio AC; Leal GF; Simões DA; de Morais MA
    Plasmid; 2013 Jan; 69(1):114-7. PubMed ID: 23041652
    [TBL] [Abstract][Full Text] [Related]  

  • 53. CRISPR/Cas9 system as an innovative genetic engineering tool: Enhancements in sequence specificity and delivery methods.
    Jo YI; Suresh B; Kim H; Ramakrishna S
    Biochim Biophys Acta; 2015 Dec; 1856(2):234-43. PubMed ID: 26434948
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Plasmid-free CRISPR/Cas9 genome editing in Saccharomyces cerevisiae.
    Nishimura A; Tanahashi R; Oi T; Kan K; Takagi H
    Biosci Biotechnol Biochem; 2023 Mar; 87(4):458-462. PubMed ID: 36694939
    [TBL] [Abstract][Full Text] [Related]  

  • 55. SWITCH: a dynamic CRISPR tool for genome engineering and metabolic pathway control for cell factory construction in Saccharomyces cerevisiae.
    Vanegas KG; Lehka BJ; Mortensen UH
    Microb Cell Fact; 2017 Feb; 16(1):25. PubMed ID: 28179021
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Construction of Designer Selectable Marker Deletions with a CRISPR-Cas9 Toolbox in
    Zhao Y; Boeke JD
    G3 (Bethesda); 2018 Mar; 8(3):789-796. PubMed ID: 29321167
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Construction of a large plasmid lacking linearizing single restriction sites by simultaneous in vivo recombination and plasmid shuffling in yeast.
    Miletti KE; Leibowitz MJ
    Yeast; 2000 Dec; 16(16):1527-34. PubMed ID: 11113975
    [TBL] [Abstract][Full Text] [Related]  

  • 58. CRISPRing into the woods.
    Tsai CJ; Xue LJ
    GM Crops Food; 2015; 6(4):206-15. PubMed ID: 26357840
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Development of a mono-promoter-driven CRISPR/Cas9 system in mammalian cells.
    Yoshioka S; Fujii W; Ogawa T; Sugiura K; Naito K
    Sci Rep; 2015 Dec; 5():18341. PubMed ID: 26669567
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Application of CRISPR/Cas9 genome editing to the study and treatment of disease.
    Pellagatti A; Dolatshad H; Valletta S; Boultwood J
    Arch Toxicol; 2015 Jul; 89(7):1023-34. PubMed ID: 25827103
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 42.