BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 25743890)

  • 1. Surface charge effects in protein adsorption on nanodiamonds.
    Aramesh M; Shimoni O; Ostrikov K; Prawer S; Cervenka J
    Nanoscale; 2015 Mar; 7(13):5726-36. PubMed ID: 25743890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein and nanoparticle adsorption on orthogonal, charge-density-versus-net-charge surface-chemical gradients.
    Beurer E; Venkataraman NV; Sommer M; Spencer ND
    Langmuir; 2012 Feb; 28(6):3159-66. PubMed ID: 22216744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precise control of surface electrostatic forces on polymer brush layers with opposite charges for resistance to protein adsorption.
    Sakata S; Inoue Y; Ishihara K
    Biomaterials; 2016 Oct; 105():102-108. PubMed ID: 27512944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lysozyme and bovine serum albumin adsorption on uncoated silica and AlOOH-coated silica particles: the influence of positively and negatively charged oxide surface coatings.
    Rezwan K; Meier LP; Gauckler LJ
    Biomaterials; 2005 Jul; 26(21):4351-7. PubMed ID: 15701363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo simulations of antibody adsorption and orientation on charged surfaces.
    Zhou J; Tsao HK; Sheng YJ; Jiang S
    J Chem Phys; 2004 Jul; 121(2):1050-7. PubMed ID: 15260639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption behavior of acidic and basic proteins onto citrate-coated Au surfaces correlated to their native fold, stability, and pI.
    Glomm WR; Halskau Ø; Hanneseth AM; Volden S
    J Phys Chem B; 2007 Dec; 111(51):14329-45. PubMed ID: 18052360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disentangling protein-silica interactions.
    Giussani L; Tabacchi G; Gianotti E; Coluccia S; Fois E
    Philos Trans A Math Phys Eng Sci; 2012 Mar; 370(1963):1463-77. PubMed ID: 22349251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing protein activities on the lysozyme and nanodiamond complex prepared for bio applications.
    Perevedentseva E; Cai PJ; Chiu YC; Cheng CL
    Langmuir; 2011 Feb; 27(3):1085-91. PubMed ID: 21192695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrolysis-controlled protein adsorption and antifouling behaviors of mixed charged self-assembled monolayer: A molecular simulation study.
    Liu J; Zhou J
    Acta Biomater; 2016 Aug; 40():23-30. PubMed ID: 27134014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of external electric fields on lysozyme adsorption by molecular dynamics simulations.
    Xie Y; Liao C; Zhou J
    Biophys Chem; 2013 Sep; 179():26-34. PubMed ID: 23727988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the thermostability of surface functionalisation by oxygen, hydroxyl, and water on nanodiamonds.
    Lai L; Barnard AS
    Nanoscale; 2011 Jun; 3(6):2566-75. PubMed ID: 21818865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The adsorption of tetracycline and vancomycin onto nanodiamond with controlled release.
    Giammarco J; Mochalin VN; Haeckel J; Gogotsi Y
    J Colloid Interface Sci; 2016 Apr; 468():253-261. PubMed ID: 26852349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on protein conformation and adsorption behaviors in nanodiamond particle-protein complexes.
    Wang HD; Niu CH; Yang Q; Badea I
    Nanotechnology; 2011 Apr; 22(14):145703. PubMed ID: 21346296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interpretation of protein adsorption: surface-induced conformational changes.
    Roach P; Farrar D; Perry CC
    J Am Chem Soc; 2005 Jun; 127(22):8168-73. PubMed ID: 15926845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticle-protein interactions: a thermodynamic and kinetic study of the adsorption of bovine serum albumin to gold nanoparticle surfaces.
    Boulos SP; Davis TA; Yang JA; Lohse SE; Alkilany AM; Holland LA; Murphy CJ
    Langmuir; 2013 Dec; 29(48):14984-96. PubMed ID: 24215427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein adsorption at charged surfaces: the role of electrostatic interactions and interfacial charge regulation.
    Hartvig RA; van de Weert M; Østergaard J; Jorgensen L; Jensen H
    Langmuir; 2011 Mar; 27(6):2634-43. PubMed ID: 21322572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface functionalisation of nanodiamonds for human neural stem cell adhesion and proliferation.
    Taylor AC; González CH; Miller BS; Edgington RJ; Ferretti P; Jackman RB
    Sci Rep; 2017 Aug; 7(1):7307. PubMed ID: 28779095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemistry of aqueous silica nanoparticle surfaces and the mechanism of selective peptide adsorption.
    Patwardhan SV; Emami FS; Berry RJ; Jones SE; Naik RR; Deschaume O; Heinz H; Perry CC
    J Am Chem Soc; 2012 Apr; 134(14):6244-56. PubMed ID: 22435500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein Attachment on Nanodiamonds.
    Lin CL; Lin CH; Chang HC; Su MC
    J Phys Chem A; 2015 Jul; 119(28):7704-11. PubMed ID: 25815400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein adsorption from flowing solutions on pure and maleic acid copolymer modified glass particles.
    Klose T; Welzel PB; Werner C
    Colloids Surf B Biointerfaces; 2006 Aug; 51(1):1-9. PubMed ID: 16797943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.