These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 25744162)
1. Dextran-based hydrogel formed by thiol-Michael addition reaction for 3D cell encapsulation. Liu ZQ; Wei Z; Zhu XL; Huang GY; Xu F; Yang JH; Osada Y; Zrínyi M; Li JH; Chen YM Colloids Surf B Biointerfaces; 2015 Apr; 128():140-148. PubMed ID: 25744162 [TBL] [Abstract][Full Text] [Related]
2. Novel glycidyl methacrylated dextran (Dex-GMA)/gelatin hydrogel scaffolds containing microspheres loaded with bone morphogenetic proteins: formulation and characteristics. Chen FM; Zhao YM; Sun HH; Jin T; Wang QT; Zhou W; Wu ZF; Jin Y J Control Release; 2007 Mar; 118(1):65-77. PubMed ID: 17250921 [TBL] [Abstract][Full Text] [Related]
3. Novel glycidyl methacrylated dextran/gelatin nanoparticles loaded with basic fibroblast growth factor: formulation and characteristics. Gu C; Zheng R; Yang Z; Wen A; Wu H; Zhang H; Yi D Drug Dev Ind Pharm; 2009 Dec; 35(12):1419-29. PubMed ID: 19929201 [TBL] [Abstract][Full Text] [Related]
4. In Situ "Clickable" Zwitterionic Starch-Based Hydrogel for 3D Cell Encapsulation. Dong D; Li J; Cui M; Wang J; Zhou Y; Luo L; Wei Y; Ye L; Sun H; Yao F ACS Appl Mater Interfaces; 2016 Feb; 8(7):4442-55. PubMed ID: 26817499 [TBL] [Abstract][Full Text] [Related]
5. Calcium deposition in photocrosslinked poly(Pro-Hyp-Gly) hydrogels encapsulated rat bone marrow stromal cells. Nurlidar F; Yamane K; Kobayashi M; Terada K; Ando T; Tanihara M J Tissue Eng Regen Med; 2018 Mar; 12(3):e1360-e1369. PubMed ID: 28715113 [TBL] [Abstract][Full Text] [Related]
6. A newly developed chemically crosslinked dextran-poly(ethylene glycol) hydrogel for cartilage tissue engineering. Jukes JM; van der Aa LJ; Hiemstra C; van Veen T; Dijkstra PJ; Zhong Z; Feijen J; van Blitterswijk CA; de Boer J Tissue Eng Part A; 2010 Feb; 16(2):565-73. PubMed ID: 19737051 [TBL] [Abstract][Full Text] [Related]
7. Injectable Shape-Holding Collagen Hydrogel for Cell Encapsulation and Delivery Cross-linked Using Thiol-Michael Addition Click Reaction. Pupkaite J; Rosenquist J; Hilborn J; Samanta A Biomacromolecules; 2019 Sep; 20(9):3475-3484. PubMed ID: 31408340 [TBL] [Abstract][Full Text] [Related]
8. Induction of mesenchymal stem cell differentiation in the absence of soluble inducer for cutaneous wound regeneration by a chitin nanofiber-based hydrogel. Shou K; Huang Y; Qi B; Hu X; Ma Z; Lu A; Jian C; Zhang L; Yu A J Tissue Eng Regen Med; 2018 Feb; 12(2):e867-e880. PubMed ID: 28079980 [TBL] [Abstract][Full Text] [Related]
9. Boron-assisted dual-crosslinked poly (γ-glutamic acid) hydrogels with high toughness for cartilage regeneration. Liu S; Pu Y; Yang R; Liu X; Wang P; Wang X; Ren Y; Tan X; Ye Z; Chi B Int J Biol Macromol; 2020 Jun; 153():158-168. PubMed ID: 32114174 [TBL] [Abstract][Full Text] [Related]
10. Photo-crosslinkable, bone marrow-derived mesenchymal stem cells-encapsulating hydrogel based on collagen for osteogenic differentiation. Zhang T; Chen H; Zhang Y; Zan Y; Ni T; Liu M; Pei R Colloids Surf B Biointerfaces; 2019 Feb; 174():528-535. PubMed ID: 30500741 [TBL] [Abstract][Full Text] [Related]
11. Disulfide cross-linked hyaluronan hydrogels. Shu XZ; Liu Y; Luo Y; Roberts MC; Prestwich GD Biomacromolecules; 2002; 3(6):1304-11. PubMed ID: 12425669 [TBL] [Abstract][Full Text] [Related]
12. Improved in situ seeding of 3D printed scaffolds using cell-releasing hydrogels. Whitely M; Cereceres S; Dhavalikar P; Salhadar K; Wilems T; Smith B; Mikos A; Cosgriff-Hernandez E Biomaterials; 2018 Dec; 185():194-204. PubMed ID: 30245387 [TBL] [Abstract][Full Text] [Related]
13. In situ forming IPN hydrogels of calcium alginate and dextran-HEMA for biomedical applications. Pescosolido L; Vermonden T; Malda J; Censi R; Dhert WJ; Alhaique F; Hennink WE; Matricardi P Acta Biomater; 2011 Apr; 7(4):1627-33. PubMed ID: 21130186 [TBL] [Abstract][Full Text] [Related]
14. Sustained release formulation of erythropoietin using hyaluronic acid hydrogels crosslinked by Michael addition. Hahn SK; Oh EJ; Miyamoto H; Shimobouji T Int J Pharm; 2006 Sep; 322(1-2):44-51. PubMed ID: 16781096 [TBL] [Abstract][Full Text] [Related]
15. Biomimetic carbohydrate substrates of tunable properties using immobilized dextran hydrogels. Lee MH; Boettiger D; Composto RJ Biomacromolecules; 2008 Sep; 9(9):2315-21. PubMed ID: 18686998 [TBL] [Abstract][Full Text] [Related]
16. Collagen organization deposited by fibroblasts encapsulated in pH responsive methacrylated alginate hydrogels. Boddupalli A; Bratlie KM J Biomed Mater Res A; 2018 Nov; 106(11):2934-2943. PubMed ID: 30208255 [TBL] [Abstract][Full Text] [Related]
17. The three dimensional cues-integrated-biomaterial potentiates differentiation of human mesenchymal stem cells. Park MH; Subbiah R; Kwon MJ; Kim WJ; Kim SH; Park K; Lee K Carbohydr Polym; 2018 Dec; 202():488-496. PubMed ID: 30287027 [TBL] [Abstract][Full Text] [Related]
18. Thermoresponsive, in situ cross-linkable hydrogels based on N-isopropylacrylamide: fabrication, characterization and mesenchymal stem cell encapsulation. Klouda L; Perkins KR; Watson BM; Hacker MC; Bryant SJ; Raphael RM; Kasper FK; Mikos AG Acta Biomater; 2011 Apr; 7(4):1460-7. PubMed ID: 21187170 [TBL] [Abstract][Full Text] [Related]
19. Rapidly in situ-forming degradable hydrogels from dextran thiols through Michael addition. Hiemstra C; Aa LJ; Zhong Z; Dijkstra PJ; Feijen J Biomacromolecules; 2007 May; 8(5):1548-56. PubMed ID: 17425366 [TBL] [Abstract][Full Text] [Related]
20. In vitro release behavior of dextran-methacrylate hydrogels using doxorubicin and other model compounds. Kim SH; Chu CC J Biomater Appl; 2000 Jul; 15(1):23-46. PubMed ID: 10972158 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]