BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

501 related articles for article (PubMed ID: 25744738)

  • 21. In vivo reprogramming for heart regeneration: A glance at efficiency, environmental impacts, challenges and future directions.
    Ebrahimi B
    J Mol Cell Cardiol; 2017 Jul; 108():61-72. PubMed ID: 28502796
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cellular reprogramming of fibroblasts in heart regeneration.
    Chi C; Song K
    J Mol Cell Cardiol; 2023 Jul; 180():84-93. PubMed ID: 36965699
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Boosters and barriers for direct cardiac reprogramming.
    Talkhabi M; Zonooz ER; Baharvand H
    Life Sci; 2017 Jun; 178():70-86. PubMed ID: 28427897
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gaining myocytes or losing fibroblasts: Challenges in cardiac fibroblast reprogramming for infarct repair.
    Nagalingam RS; Safi HA; Czubryt MP
    J Mol Cell Cardiol; 2016 Apr; 93():108-14. PubMed ID: 26640115
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heart repair by reprogramming non-myocytes with cardiac transcription factors.
    Song K; Nam YJ; Luo X; Qi X; Tan W; Huang GN; Acharya A; Smith CL; Tallquist MD; Neilson EG; Hill JA; Bassel-Duby R; Olson EN
    Nature; 2012 May; 485(7400):599-604. PubMed ID: 22660318
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct Cardiac Reprogramming for Cardiovascular Regeneration and Differentiation.
    Sadahiro T; Ieda M
    Keio J Med; 2020 Sep; 69(3):49-58. PubMed ID: 31915320
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct Cardiac Reprogramming: A Novel Approach for Heart Regeneration.
    Tani H; Sadahiro T; Ieda M
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30189626
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ameliorating the Fibrotic Remodeling of the Heart through Direct Cardiac Reprogramming.
    Bektik E; Fu JD
    Cells; 2019 Jul; 8(7):. PubMed ID: 31277520
    [TBL] [Abstract][Full Text] [Related]  

  • 29. S-phase Synchronization Facilitates the Early Progression of Induced-Cardiomyocyte Reprogramming through Enhanced Cell-Cycle Exit.
    Bektik E; Dennis A; Pawlowski G; Zhou C; Maleski D; Takahashi S; Laurita KR; Deschênes I; Fu JD
    Int J Mol Sci; 2018 May; 19(5):. PubMed ID: 29734659
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Direct reprogramming of cardiac fibroblasts to cardiomyocytes using microRNAs.
    Jayawardena T; Mirotsou M; Dzau VJ
    Methods Mol Biol; 2014; 1150():263-72. PubMed ID: 24744005
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of direct cardiac reprogramming for clinical applications.
    Yamada Y; Sadahiro T; Ieda M
    J Mol Cell Cardiol; 2023 May; 178():1-8. PubMed ID: 36918145
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reprogramming of Non-myocytes into Cardiomyocyte-like Cells: Challenges and Opportunities.
    Farber G; Qian L
    Curr Cardiol Rep; 2020 Jun; 22(8):54. PubMed ID: 32562156
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MicroRNA induced cardiac reprogramming in vivo: evidence for mature cardiac myocytes and improved cardiac function.
    Jayawardena TM; Finch EA; Zhang L; Zhang H; Hodgkinson CP; Pratt RE; Rosenberg PB; Mirotsou M; Dzau VJ
    Circ Res; 2015 Jan; 116(3):418-24. PubMed ID: 25351576
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Direct reprogramming of fibroblasts into cardiomyocytes.
    Chen Y; Yang Z; Zhao ZA; Shen Z
    Stem Cell Res Ther; 2017 May; 8(1):118. PubMed ID: 28545505
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Generation of Functional Human Cardiac Progenitor Cells by High-Efficiency Protein Transduction.
    Li XH; Li Q; Jiang L; Deng C; Liu Z; Fu Y; Zhang M; Tan H; Feng Y; Shan Z; Wang J; Yu XY
    Stem Cells Transl Med; 2015 Dec; 4(12):1415-24. PubMed ID: 26564862
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cardiac reprogramming reduces inflammatory macrophages and improves cardiac function in chronic myocardial infarction.
    Abe Y; Tani H; Sadahiro T; Yamada Y; Akiyama T; Nakano K; Honda S; Ko S; Anzai A; Ieda M
    Biochem Biophys Res Commun; 2024 Jan; 690():149272. PubMed ID: 37992523
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cardiomyocyte precursors generated by direct reprogramming and molecular beacon selection attenuate ventricular remodeling after experimental myocardial infarction.
    Bachamanda Somesh D; Klose K; Maring JA; Kunkel D; Jürchott K; Protze SI; Klein O; Nebrich G; Becker M; Krüger U; Nazari-Shafti TZ; Falk V; Kurtz A; Gossen M; Stamm C
    Stem Cell Res Ther; 2023 Oct; 14(1):296. PubMed ID: 37840130
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Non-viral approaches for somatic cell reprogramming into cardiomyocytes.
    Zhou W; Ma T; Ding S
    Semin Cell Dev Biol; 2022 Feb; 122():28-36. PubMed ID: 34238675
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chamber-Specific Protein Expression during Direct Cardiac Reprogramming.
    Zhang Z; Villalpando J; Zhang W; Nam YJ
    Cells; 2021 Jun; 10(6):. PubMed ID: 34208439
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pluripotent reprogramming and lineage reprogramming: promises and challenges in cardiovascular regeneration.
    He WJ; Hou Q; Han QW; Han WD; Fu XB
    Tissue Eng Part B Rev; 2014 Aug; 20(4):304-13. PubMed ID: 24063625
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.