These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 25744861)

  • 1. Microfluidic generation of uniform water droplets using gas as the continuous phase.
    Jiang K; Lu AX; Dimitrakopoulos P; DeVoe DL; Raghavan SR
    J Colloid Interface Sci; 2015 Jun; 448():275-9. PubMed ID: 25744861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic generation of aqueous two-phase-system (ATPS) droplets by oil-droplet choppers.
    Zhou C; Zhu P; Tian Y; Tang X; Shi R; Wang L
    Lab Chip; 2017 Sep; 17(19):3310-3317. PubMed ID: 28861566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microneedle-assisted microfluidic flow focusing for versatile and high throughput water-in-water droplet generation.
    Jeyhani M; Gnyawali V; Abbasi N; Hwang DK; Tsai SSH
    J Colloid Interface Sci; 2019 Oct; 553():382-389. PubMed ID: 31226629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly productive droplet formation by anisotropic elongation of a thread flow in a microchannel.
    Saeki D; Sugiura S; Kanamori T; Sato S; Mukataka S; Ichikawa S
    Langmuir; 2008 Dec; 24(23):13809-13. PubMed ID: 18986185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A study of the production and reversible stability of EGaIn liquid metal microspheres using flow focusing.
    Thelen J; Dickey MD; Ward T
    Lab Chip; 2012 Oct; 12(20):3961-7. PubMed ID: 22895484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device.
    Choi CH; Jung JH; Rhee YW; Kim DP; Shim SE; Lee CS
    Biomed Microdevices; 2007 Dec; 9(6):855-62. PubMed ID: 17578667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic preparation of water-in-oil-in-water emulsions with an ultra-thin oil phase layer.
    Saeki D; Sugiura S; Kanamori T; Sato S; Ichikawa S
    Lab Chip; 2010 Feb; 10(3):357-62. PubMed ID: 20091008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Droplet microfluidics with a nanoemulsion continuous phase.
    Gu T; Yeap EW; Somasundar A; Chen R; Hatton TA; Khan SA
    Lab Chip; 2016 Jul; 16(14):2694-700. PubMed ID: 27306833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-speed, clinical-scale microfluidic generation of stable phase-change droplets for gas embolotherapy.
    Bardin D; Martz TD; Sheeran PS; Shih R; Dayton PA; Lee AP
    Lab Chip; 2011 Dec; 11(23):3990-8. PubMed ID: 22011845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High inertial microfluidics for droplet generation in a flow-focusing geometry.
    Mastiani M; Seo S; Riou B; Kim M
    Biomed Microdevices; 2019 Jun; 21(3):50. PubMed ID: 31203430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A microfluidic chip for formation and collection of emulsion droplets utilizing active pneumatic micro-choppers and micro-switches.
    Lai CW; Lin YH; Lee GB
    Biomed Microdevices; 2008 Oct; 10(5):749-56. PubMed ID: 18484177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mode Transition of Droplet Formation in a Semi-3D Flow-Focusing Microfluidic Droplet System.
    Wu Y; Qian X; Zhang M; Dong Y; Sun S; Wang X
    Micromachines (Basel); 2018 Mar; 9(4):. PubMed ID: 30424073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aqueous two-phase microdroplets with reversible phase transitions.
    Boreyko JB; Mruetusatorn P; Retterer ST; Collier CP
    Lab Chip; 2013 Apr; 13(7):1295-301. PubMed ID: 23381219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of Microdroplet Generation Method for Organic Solvents Used in Chemical Synthesis.
    Hattori S; Tang C; Tanaka D; Yoon DH; Nozaki Y; Fujita H; Akitsu T; Sekiguchi T; Shoji S
    Molecules; 2020 Nov; 25(22):. PubMed ID: 33212771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-Fluorophore Detection in Femtoliter Droplets Generated by Flow Focusing.
    Weinmeister R; Freeman E; Eperon IC; Stuart AM; Hudson AJ
    ACS Nano; 2015 Oct; 9(10):9718-30. PubMed ID: 26365461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asynchronous generation of oil droplets using a microfluidic flow focusing system.
    Thurgood P; Baratchi S; Arash A; Pirogova E; Jex AR; Khoshmanesh K
    Sci Rep; 2019 Jul; 9(1):10600. PubMed ID: 31332249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic Device for Droplet Pairing by Combining Droplet Railing and Floating Trap Arrays.
    Duchamp M; Arnaud M; Bobisse S; Coukos G; Harari A; Renaud P
    Micromachines (Basel); 2021 Sep; 12(9):. PubMed ID: 34577720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays.
    Zheng B; Tice JD; Ismagilov RF
    Anal Chem; 2004 Sep; 76(17):4977-82. PubMed ID: 15373431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidics with aqueous two-phase systems.
    Hardt S; Hahn T
    Lab Chip; 2012 Feb; 12(3):434-42. PubMed ID: 21897979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deformation and breakup of micro- and nanoparticle stabilized droplets in microfluidic extensional flows.
    Mulligan MK; Rothstein JP
    Langmuir; 2011 Aug; 27(16):9760-8. PubMed ID: 21732665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.