BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 2574564)

  • 1. Protein oxidation and proteolysis during aging and oxidative stress.
    Starke-Reed PE; Oliver CN
    Arch Biochem Biophys; 1989 Dec; 275(2):559-67. PubMed ID: 2574564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein modification in aging.
    Stadtman ER; Starke-Reed PE; Oliver CN; Carney JM; Floyd RA
    EXS; 1992; 62():64-72. PubMed ID: 1360283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Covalent modification of proteins by mixed-function oxidation: recognition by intracellular proteases.
    Rivett AJ; Roseman JE; Oliver CN; Levine RL; Stadtman ER
    Prog Clin Biol Res; 1985; 180():317-28. PubMed ID: 2863828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preferential degradation of the oxidatively modified form of glutamine synthetase by intracellular mammalian proteases.
    Rivett AJ
    J Biol Chem; 1985 Jan; 260(1):300-5. PubMed ID: 2856920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of hepatic proteins in rats exposed to high oxygen concentration.
    Starke PE; Oliver CN; Stadtman ER
    FASEB J; 1987 Jul; 1(1):36-9. PubMed ID: 2886388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aging of the liver: proteolysis of oxidatively modified glutamine synthetase.
    Sahakian JA; Szweda LI; Friguet B; Kitani K; Levine RL
    Arch Biochem Biophys; 1995 Apr; 318(2):411-7. PubMed ID: 7733671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative modification of enzymes during aging and acute oxidative stress.
    Starke-Reed PE; Oliver CN
    Basic Life Sci; 1988; 49():537-40. PubMed ID: 2907971
    [No Abstract]   [Full Text] [Related]  

  • 8. The effect of mixed-function oxidation of enzymes on their susceptibility to degradation by a nonlysosomal cysteine proteinase.
    Rivett AJ
    Arch Biochem Biophys; 1985 Dec; 243(2):624-32. PubMed ID: 2867745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutamine synthetase degradation is controlled by oxidative proteolysis in the marine cyanobacterium Prochlorococcus marinus strain PCC 9511.
    Gómez-Baena G; Manuel García-Fernández J; López-Lozano A; Toribio F; Diez J
    Biochim Biophys Acta; 2006 Jun; 1760(6):930-40. PubMed ID: 16530332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-alpha-phenylnitrone.
    Carney JM; Starke-Reed PE; Oliver CN; Landum RW; Cheng MS; Wu JF; Floyd RA
    Proc Natl Acad Sci U S A; 1991 May; 88(9):3633-6. PubMed ID: 1673789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Turnover of bacterial glutamine synthetase: oxidative inactivation precedes proteolysis.
    Levine RL; Oliver CN; Fulks RM; Stadtman ER
    Proc Natl Acad Sci U S A; 1981 Apr; 78(4):2120-4. PubMed ID: 6113590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of the multicatalytic proteinase (proteasome) by 4-hydroxy-2-nonenal cross-linked protein.
    Friguet B; Szweda LI
    FEBS Lett; 1997 Mar; 405(1):21-5. PubMed ID: 9094417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteolysis induced by metal-catalyzed oxidation.
    Levine RL
    Revis Biol Celular; 1989; 21():347-60. PubMed ID: 2576881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Susceptibility of glucose-6-phosphate dehydrogenase modified by 4-hydroxy-2-nonenal and metal-catalyzed oxidation to proteolysis by the multicatalytic protease.
    Friguet B; Szweda LI; Stadtman ER
    Arch Biochem Biophys; 1994 May; 311(1):168-73. PubMed ID: 8185314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protease So from Escherichia coli preferentially degrades oxidatively damaged glutamine synthetase.
    Lee YS; Park SC; Goldberg AL; Chung CH
    J Biol Chem; 1988 May; 263(14):6643-6. PubMed ID: 2896198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative modification of Escherichia coli glutamine synthetase. Decreases in the thermodynamic stability of protein structure and specific changes in the active site conformation.
    Fisher MT; Stadtman ER
    J Biol Chem; 1992 Jan; 267(3):1872-80. PubMed ID: 1346137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inactivation of key metabolic enzymes by mixed-function oxidation reactions: possible implication in protein turnover and ageing.
    Fucci L; Oliver CN; Coon MJ; Stadtman ER
    Proc Natl Acad Sci U S A; 1983 Mar; 80(6):1521-5. PubMed ID: 6572914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative proteomics analysis of differential protein expression and oxidative modification of specific proteins in the brains of old mice.
    Poon HF; Vaishnav RA; Getchell TV; Getchell ML; Butterfield DA
    Neurobiol Aging; 2006 Jul; 27(7):1010-9. PubMed ID: 15979213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aging and proteolysis of oxidized proteins.
    Agarwal S; Sohal RS
    Arch Biochem Biophys; 1994 Feb; 309(1):24-8. PubMed ID: 7509589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced degradation of oxidized glutamine synthetase in vitro and after microinjection into hepatoma cells.
    Rivett AJ; Hare JF
    Arch Biochem Biophys; 1987 Dec; 259(2):423-30. PubMed ID: 2892465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.