These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 2574564)

  • 1. Protein oxidation and proteolysis during aging and oxidative stress.
    Starke-Reed PE; Oliver CN
    Arch Biochem Biophys; 1989 Dec; 275(2):559-67. PubMed ID: 2574564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein modification in aging.
    Stadtman ER; Starke-Reed PE; Oliver CN; Carney JM; Floyd RA
    EXS; 1992; 62():64-72. PubMed ID: 1360283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Covalent modification of proteins by mixed-function oxidation: recognition by intracellular proteases.
    Rivett AJ; Roseman JE; Oliver CN; Levine RL; Stadtman ER
    Prog Clin Biol Res; 1985; 180():317-28. PubMed ID: 2863828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preferential degradation of the oxidatively modified form of glutamine synthetase by intracellular mammalian proteases.
    Rivett AJ
    J Biol Chem; 1985 Jan; 260(1):300-5. PubMed ID: 2856920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of hepatic proteins in rats exposed to high oxygen concentration.
    Starke PE; Oliver CN; Stadtman ER
    FASEB J; 1987 Jul; 1(1):36-9. PubMed ID: 2886388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aging of the liver: proteolysis of oxidatively modified glutamine synthetase.
    Sahakian JA; Szweda LI; Friguet B; Kitani K; Levine RL
    Arch Biochem Biophys; 1995 Apr; 318(2):411-7. PubMed ID: 7733671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative modification of enzymes during aging and acute oxidative stress.
    Starke-Reed PE; Oliver CN
    Basic Life Sci; 1988; 49():537-40. PubMed ID: 2907971
    [No Abstract]   [Full Text] [Related]  

  • 8. The effect of mixed-function oxidation of enzymes on their susceptibility to degradation by a nonlysosomal cysteine proteinase.
    Rivett AJ
    Arch Biochem Biophys; 1985 Dec; 243(2):624-32. PubMed ID: 2867745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutamine synthetase degradation is controlled by oxidative proteolysis in the marine cyanobacterium Prochlorococcus marinus strain PCC 9511.
    Gómez-Baena G; Manuel García-Fernández J; López-Lozano A; Toribio F; Diez J
    Biochim Biophys Acta; 2006 Jun; 1760(6):930-40. PubMed ID: 16530332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-alpha-phenylnitrone.
    Carney JM; Starke-Reed PE; Oliver CN; Landum RW; Cheng MS; Wu JF; Floyd RA
    Proc Natl Acad Sci U S A; 1991 May; 88(9):3633-6. PubMed ID: 1673789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Turnover of bacterial glutamine synthetase: oxidative inactivation precedes proteolysis.
    Levine RL; Oliver CN; Fulks RM; Stadtman ER
    Proc Natl Acad Sci U S A; 1981 Apr; 78(4):2120-4. PubMed ID: 6113590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of the multicatalytic proteinase (proteasome) by 4-hydroxy-2-nonenal cross-linked protein.
    Friguet B; Szweda LI
    FEBS Lett; 1997 Mar; 405(1):21-5. PubMed ID: 9094417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteolysis induced by metal-catalyzed oxidation.
    Levine RL
    Revis Biol Celular; 1989; 21():347-60. PubMed ID: 2576881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Susceptibility of glucose-6-phosphate dehydrogenase modified by 4-hydroxy-2-nonenal and metal-catalyzed oxidation to proteolysis by the multicatalytic protease.
    Friguet B; Szweda LI; Stadtman ER
    Arch Biochem Biophys; 1994 May; 311(1):168-73. PubMed ID: 8185314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protease So from Escherichia coli preferentially degrades oxidatively damaged glutamine synthetase.
    Lee YS; Park SC; Goldberg AL; Chung CH
    J Biol Chem; 1988 May; 263(14):6643-6. PubMed ID: 2896198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative modification of Escherichia coli glutamine synthetase. Decreases in the thermodynamic stability of protein structure and specific changes in the active site conformation.
    Fisher MT; Stadtman ER
    J Biol Chem; 1992 Jan; 267(3):1872-80. PubMed ID: 1346137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inactivation of key metabolic enzymes by mixed-function oxidation reactions: possible implication in protein turnover and ageing.
    Fucci L; Oliver CN; Coon MJ; Stadtman ER
    Proc Natl Acad Sci U S A; 1983 Mar; 80(6):1521-5. PubMed ID: 6572914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative proteomics analysis of differential protein expression and oxidative modification of specific proteins in the brains of old mice.
    Poon HF; Vaishnav RA; Getchell TV; Getchell ML; Butterfield DA
    Neurobiol Aging; 2006 Jul; 27(7):1010-9. PubMed ID: 15979213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aging and proteolysis of oxidized proteins.
    Agarwal S; Sohal RS
    Arch Biochem Biophys; 1994 Feb; 309(1):24-8. PubMed ID: 7509589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced degradation of oxidized glutamine synthetase in vitro and after microinjection into hepatoma cells.
    Rivett AJ; Hare JF
    Arch Biochem Biophys; 1987 Dec; 259(2):423-30. PubMed ID: 2892465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.