These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 25745674)

  • 1. Kinetics of aggregation in liquids with dispersed nanoparticles.
    Jeżewski W
    Phys Chem Chem Phys; 2015 Apr; 17(14):8828-35. PubMed ID: 25745674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of long-range interactions on nanoparticle-induced aggregation.
    Jeżewski W
    Phys Chem Chem Phys; 2016 Aug; 18(33):22929-36. PubMed ID: 27485887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aggregation and fragmentation in liquids with dispersed nanoparticles.
    Jeżewski W
    Phys Chem Chem Phys; 2018 Jul; 20(27):18879-18888. PubMed ID: 29969121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of lipid liquid crystalline nanoparticles on cationic, hydrophilic, and hydrophobic surfaces.
    Chang DP; Jankunec M; Barauskas J; Tiberg F; Nylander T
    ACS Appl Mater Interfaces; 2012 May; 4(5):2643-51. PubMed ID: 22515950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of aggregation of nanoparticles by double-hydrophilic block copolymers: a dissipative particle dynamics study.
    Huang J; Wang Y
    J Phys Chem B; 2007 Jul; 111(27):7735-41. PubMed ID: 17579392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrodynamic fragmentation of nanoparticle aggregates at orthokinetic coagulation.
    Dukhin S; Zhu C; Dave RN; Yu Q
    Adv Colloid Interface Sci; 2005 Jun; 114-115():119-31. PubMed ID: 15936286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of stable Ag-nanoparticle aggregates induced by dithiol cross-linking.
    Ahonen P; Laaksonen T; Nykänen A; Ruokolainen J; Kontturi K
    J Phys Chem B; 2006 Jul; 110(26):12954-8. PubMed ID: 16805598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation.
    Pettibone JM; Cwiertny DM; Scherer M; Grassian VH
    Langmuir; 2008 Jun; 24(13):6659-67. PubMed ID: 18537279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concurrent aggregation and deposition of TiO2 nanoparticles in a sandy porous media.
    Solovitch N; Labille J; Rose J; Chaurand P; Borschneck D; Wiesner MR; Bottero JY
    Environ Sci Technol; 2010 Jul; 44(13):4897-902. PubMed ID: 20524647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring nanoparticles in the presence of larger particles in liquids using acoustics and electron microscopy.
    Dukhin AS; Goetz PJ; Fang X; Somasundaran P
    J Colloid Interface Sci; 2010 Feb; 342(1):18-25. PubMed ID: 19900682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attachment efficiency of nanoparticle aggregation in aqueous dispersions: modeling and experimental validation.
    Zhang W; Crittenden J; Li K; Chen Y
    Environ Sci Technol; 2012 Jul; 46(13):7054-62. PubMed ID: 22260181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyion-induced aggregation of oppositely charged liposomes and charged colloidal particles: the many facets of complex formation in low-density colloidal systems.
    Cametti C
    Chem Phys Lipids; 2008 Oct; 155(2):63-73. PubMed ID: 18718458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the solution self-assembly of nanocolloidal brushes: insights from simulations.
    Striolo A
    Nanotechnology; 2008 Nov; 19(44):445606. PubMed ID: 21832738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane emulsification and solvent pervaporation processes for the continuous synthesis of functional magnetic and Janus nanobeads.
    Chang EP; Hatton TA
    Langmuir; 2012 Jun; 28(25):9748-58. PubMed ID: 22564129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of nucleation, denucleation, coarsening, and aggregation kinetics in nanoparticle preparations and neurological disease.
    Skrdla PJ
    Langmuir; 2012 Mar; 28(10):4842-57. PubMed ID: 22324463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antagonistic effects between magnetite nanoparticles and a hydrophobic surfactant in highly concentrated Pickering emulsions.
    Vílchez A; Rodríguez-Abreu C; Menner A; Bismarck A; Esquena J
    Langmuir; 2014 May; 30(18):5064-74. PubMed ID: 24738961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the structural and surface properties of transition-metal nanoparticles in ionic liquids.
    Dupont J; Scholten JD
    Chem Soc Rev; 2010 May; 39(5):1780-804. PubMed ID: 20419219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of cyanine dyes on gold nanoparticles and formation of J-aggregates in the nanoparticle assembly.
    Lim II; Goroleski F; Mott D; Kariuki N; Ip W; Luo J; Zhong CJ
    J Phys Chem B; 2006 Apr; 110(13):6673-82. PubMed ID: 16570972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and kinetics of shear aggregation in turbulent flows. I. Early stage of aggregation.
    Bäbler MU; Moussa AS; Soos M; Morbidelli M
    Langmuir; 2010 Aug; 26(16):13142-52. PubMed ID: 20695552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stability of sputter-deposited gold nanoparticles in imidazolium ionic liquids.
    Vanecht E; Binnemans K; Patskovsky S; Meunier M; Seo JW; Stappers L; Fransaer J
    Phys Chem Chem Phys; 2012 Apr; 14(16):5662-71. PubMed ID: 22422275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.