BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 25746993)

  • 1. Accumulation of d-glucose from pentoses by metabolically engineered Escherichia coli.
    Xia T; Han Q; Costanzo WV; Zhu Y; Urbauer JL; Eiteman MA
    Appl Environ Microbiol; 2015 May; 81(10):3387-94. PubMed ID: 25746993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose consumption in carbohydrate mixtures by phosphotransferase-system mutants of Escherichia coli.
    Xia T; Sriram N; Lee SA; Altman R; Urbauer JL; Altman E; Eiteman MA
    Microbiology (Reading); 2017 Jun; 163(6):866-877. PubMed ID: 28640743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphatases and phosphate affect the formation of glucose from pentoses in
    Niyas AMM; Eiteman MA
    Eng Life Sci; 2017 May; 17(5):579-584. PubMed ID: 32624803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deletion of four genes in Escherichia coli enables preferential consumption of xylose and secretion of glucose.
    Diaz CAC; Bennett RK; Papoutsakis ET; Antoniewicz MR
    Metab Eng; 2019 Mar; 52():168-177. PubMed ID: 30529131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous uptake of lignocellulose-based monosaccharides by Escherichia coli.
    Jarmander J; Hallström BM; Larsson G
    Biotechnol Bioeng; 2014 Jun; 111(6):1108-15. PubMed ID: 24382675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering nonphosphorylative metabolism to synthesize mesaconate from lignocellulosic sugars in Escherichia coli.
    Bai W; Tai YS; Wang J; Wang J; Jambunathan P; Fox KJ; Zhang K
    Metab Eng; 2016 Nov; 38():285-292. PubMed ID: 27697562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous utilization of glucose, xylose and arabinose in the presence of acetate by a consortium of Escherichia coli strains.
    Xia T; Eiteman MA; Altman E
    Microb Cell Fact; 2012 Jun; 11():77. PubMed ID: 22691294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial synthesis of 3-dehydroshikimic acid: a comparative analysis of D-xylose, L-arabinose, and D-glucose carbon sources.
    Li K; Frost JW
    Biotechnol Prog; 1999; 15(5):876-83. PubMed ID: 10514257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cultivation strategies for production of (R)-3-hydroxybutyric acid from simultaneous consumption of glucose, xylose and arabinose by Escherichia coli.
    Jarmander J; Belotserkovsky J; Sjöberg G; Guevara-Martínez M; Pérez-Zabaleta M; Quillaguamán J; Larsson G
    Microb Cell Fact; 2015 Apr; 14():51. PubMed ID: 25889969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering a synthetic anaerobic respiration for reduction of xylose to xylitol using NADH output of glucose catabolism by Escherichia coli AI21.
    Iverson A; Garza E; Manow R; Wang J; Gao Y; Grayburn S; Zhou S
    BMC Syst Biol; 2016 Apr; 10():31. PubMed ID: 27083875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.
    Matsuoka Y; Shimizu K
    J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recombinant Ralstonia eutropha engineered to utilize xylose and its use for the production of poly(3-hydroxybutyrate) from sunflower stalk hydrolysate solution.
    Kim HS; Oh YH; Jang YA; Kang KH; David Y; Yu JH; Song BK; Choi JI; Chang YK; Joo JC; Park SJ
    Microb Cell Fact; 2016 Jun; 15():95. PubMed ID: 27260327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineered Escherichia coli capable of co-utilization of cellobiose and xylose.
    Vinuselvi P; Lee SK
    Enzyme Microb Technol; 2012 Jan; 50(1):1-4. PubMed ID: 22133432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Production of L-lactic acid from pentose by a genetically engineered Escherichia coli].
    Zhao J; Xu L; Wang Y; Zhao X; Wang J
    Wei Sheng Wu Xue Bao; 2013 Apr; 53(4):328-37. PubMed ID: 23858707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of different carbon sources on pyruvic acid production by using lpdA gene knockout Escherichia coli].
    Shen D; Feng X; Lin D; Yao S
    Sheng Wu Gong Cheng Xue Bao; 2009 Sep; 25(9):1345-51. PubMed ID: 19938477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global gene expression differences associated with changes in glycolytic flux and growth rate in Escherichia coli during the fermentation of glucose and xylose.
    Gonzalez R; Tao H; Shanmugam KT; York SW; Ingram LO
    Biotechnol Prog; 2002; 18(1):6-20. PubMed ID: 11822894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of NADPH supply during xylitol production by engineered Escherichia coli.
    Chin JW; Khankal R; Monroe CA; Maranas CD; Cirino PC
    Biotechnol Bioeng; 2009 Jan; 102(1):209-20. PubMed ID: 18698648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A substrate-selective co-fermentation strategy with Escherichia coli produces lactate by simultaneously consuming xylose and glucose.
    Eiteman MA; Lee SA; Altman R; Altman E
    Biotechnol Bioeng; 2009 Feb; 102(3):822-7. PubMed ID: 18828178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering Pseudomonas putida S12 for efficient utilization of D-xylose and L-arabinose.
    Meijnen JP; de Winde JH; Ruijssenaars HJ
    Appl Environ Microbiol; 2008 Aug; 74(16):5031-7. PubMed ID: 18586973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolome analysis-based design and engineering of a metabolic pathway in Corynebacterium glutamicum to match rates of simultaneous utilization of D-glucose and L-arabinose.
    Kawaguchi H; Yoshihara K; Hara KY; Hasunuma T; Ogino C; Kondo A
    Microb Cell Fact; 2018 May; 17(1):76. PubMed ID: 29773073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.