BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 25746998)

  • 1. Evolutionary Engineering Improves Tolerance for Replacement Jet Fuels in Saccharomyces cerevisiae.
    Brennan TC; Williams TC; Schulz BL; Palfreyman RW; Krömer JO; Nielsen LK
    Appl Environ Microbiol; 2015 May; 81(10):3316-25. PubMed ID: 25746998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Capturing of the monoterpene olefin limonene produced in Saccharomyces cerevisiae.
    Jongedijk E; Cankar K; Ranzijn J; van der Krol S; Bouwmeester H; Beekwilder J
    Yeast; 2015 Jan; 32(1):159-71. PubMed ID: 25164098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alleviating monoterpene toxicity using a two-phase extractive fermentation for the bioproduction of jet fuel mixtures in Saccharomyces cerevisiae.
    Brennan TC; Turner CD; Krömer JO; Nielsen LK
    Biotechnol Bioeng; 2012 Oct; 109(10):2513-22. PubMed ID: 22539043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Key cytomembrane ABC transporters of Saccharomyces cerevisiae fail to improve the tolerance to D-limonene.
    Hu F; Liu J; Du G; Hua Z; Zhou J; Chen J
    Biotechnol Lett; 2012 Aug; 34(8):1505-9. PubMed ID: 22526424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Tolerance of Saccharomyces cerevisiae to monoterpenes--a review].
    Liu J; Zhou J; Chen J
    Wei Sheng Wu Xue Bao; 2013 Jun; 53(6):531-7. PubMed ID: 24028054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biotechnological production of limonene in microorganisms.
    Jongedijk E; Cankar K; Buchhaupt M; Schrader J; Bouwmeester H; Beekwilder J
    Appl Microbiol Biotechnol; 2016 Apr; 100(7):2927-38. PubMed ID: 26915992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alpha-Terpineol production from an engineered Saccharomyces cerevisiae cell factory.
    Zhang C; Li M; Zhao GR; Lu W
    Microb Cell Fact; 2019 Sep; 18(1):160. PubMed ID: 31547812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De novo production of the monoterpenoid geranic acid by metabolically engineered Pseudomonas putida.
    Mi J; Becher D; Lubuta P; Dany S; Tusch K; Schewe H; Buchhaupt M; Schrader J
    Microb Cell Fact; 2014 Dec; 13():170. PubMed ID: 25471523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering of Saccharomyces cerevisiae for linalool production.
    Amiri P; Shahpiri A; Asadollahi MA; Momenbeik F; Partow S
    Biotechnol Lett; 2016 Mar; 38(3):503-8. PubMed ID: 26614300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response of Saccharomyces cerevisiae to D-limonene-induced oxidative stress.
    Liu J; Zhu Y; Du G; Zhou J; Chen J
    Appl Microbiol Biotechnol; 2013 Jul; 97(14):6467-75. PubMed ID: 23644769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial Synthesis of Myrcene by Metabolically Engineered Escherichia coli.
    Kim EM; Eom JH; Um Y; Kim Y; Woo HM
    J Agric Food Chem; 2015 May; 63(18):4606-12. PubMed ID: 25909988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improve the production of D-limonene by regulating the mevalonate pathway of Saccharomyces cerevisiae during alcoholic beverage fermentation.
    Hu Z; Li H; Weng Y; Li P; Zhang C; Xiao D
    J Ind Microbiol Biotechnol; 2020 Dec; 47(12):1083-1097. PubMed ID: 33191463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Rgd1p Rho GTPase-activating protein and the Mid2p cell wall sensor are required at low pH for protein kinase C pathway activation and cell survival in Saccharomyces cerevisiae.
    Claret S; Gatti X; Doignon F; Thoraval D; Crouzet M
    Eukaryot Cell; 2005 Aug; 4(8):1375-86. PubMed ID: 16087742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and screening of microorganisms for R-(+)-limonene and (-)-beta-pinene biotransformation.
    Rottava I; Cortina PF; Grando CE; Colla AR; Martello E; Cansian RL; Toniazzo G; Treichel H; Antunes OA; Oestreicher EG; de Oliveira D
    Appl Biochem Biotechnol; 2010 Oct; 162(3):719-32. PubMed ID: 19950000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enabling the synthesis of medium chain alkanes and 1-alkenes in yeast.
    Zhu Z; Zhou YJ; Kang MK; Krivoruchko A; Buijs NA; Nielsen J
    Metab Eng; 2017 Nov; 44():81-88. PubMed ID: 28939277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exogenous ergosterol protects Saccharomyces cerevisiae from D-limonene stress.
    Liu J; Zhu Y; Du G; Zhou J; Chen J
    J Appl Microbiol; 2013 Feb; 114(2):482-91. PubMed ID: 23082823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance.
    Yang J; Bae JY; Lee YM; Kwon H; Moon HY; Kang HA; Yee SB; Kim W; Choi W
    Biotechnol Bioeng; 2011 Aug; 108(8):1776-87. PubMed ID: 21437883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering the productivity of recombinant Escherichia coli for limonene formation from glycerol in minimal media.
    Willrodt C; David C; Cornelissen S; Bühler B; Julsing MK; Schmid A
    Biotechnol J; 2014 Aug; 9(8):1000-12. PubMed ID: 24756896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary engineering of Saccharomyces cerevisiae for improved industrially important properties.
    Cakar ZP; Turanli-Yildiz B; Alkim C; Yilmaz U
    FEMS Yeast Res; 2012 Mar; 12(2):171-82. PubMed ID: 22136139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional analyses of the extra- and intracellular domains of the yeast cell wall integrity sensors Mid2 and Wsc1.
    Straede A; Heinisch JJ
    FEBS Lett; 2007 Sep; 581(23):4495-500. PubMed ID: 17761172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.