BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 25747136)

  • 1. Protein redox regulation in the thylakoid lumen: the importance of disulfide bonds for violaxanthin de-epoxidase.
    Simionato D; Basso S; Zaffagnini M; Lana T; Marzotto F; Trost P; Morosinotto T
    FEBS Lett; 2015 Apr; 589(8):919-23. PubMed ID: 25747136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of key residues for pH dependent activation of violaxanthin de-epoxidase from Arabidopsis thaliana.
    Fufezan C; Simionato D; Morosinotto T
    PLoS One; 2012; 7(4):e35669. PubMed ID: 22558195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A structural basis for the pH-dependent xanthophyll cycle in Arabidopsis thaliana.
    Arnoux P; Morosinotto T; Saga G; Bassi R; Pignol D
    Plant Cell; 2009 Jul; 21(7):2036-44. PubMed ID: 19638474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Violaxanthin de-epoxidase disulphides and their role in activity and thermal stability.
    Hallin EI; Guo K; Åkerlund HE
    Photosynth Res; 2015 May; 124(2):191-8. PubMed ID: 25764016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of an atypical de-epoxidase for photoprotection in the green lineage.
    Li Z; Peers G; Dent RM; Bai Y; Yang SY; Apel W; Leonelli L; Niyogi KK
    Nat Plants; 2016 Sep; 2():16140. PubMed ID: 27618685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into the binding mechanism of ascorbic acid and violaxanthin with violaxanthin de-epoxidase (VDE) and chlorophycean violaxanthin de-epoxidase (CVDE) enzymes.
    Biswal S; Gupta PSS; Panda SK; Bhat HR; Rana MK
    Photosynth Res; 2023 Jun; 156(3):337-354. PubMed ID: 36847893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression of violaxanthin de-epoxidase: properties of C-terminal deletions on activity and pH-dependent lipid binding.
    Hieber AD; Bugos RC; Verhoeven AS; Yamamoto HY
    Planta; 2002 Jan; 214(3):476-83. PubMed ID: 11855651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular studies on structural changes and oligomerisation of violaxanthin de-epoxidase associated with the pH-dependent activation.
    Hallin EI; Hasan M; Guo K; Åkerlund HE
    Photosynth Res; 2016 Jul; 129(1):29-41. PubMed ID: 27116125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of violaxanthin de-epoxidation from the stroma and lumen sides of isolated thylakoid membranes from Arabidopsis: implications for the mechanism of de-epoxidation.
    Macko S; Wehner A; Jahns P
    Planta; 2002 Dec; 216(2):309-14. PubMed ID: 12447545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Violaxanthin de-epoxidase is rate-limiting for non-photochemical quenching under subsaturating light or during chilling in Arabidopsis.
    Chen Z; Gallie DR
    Plant Physiol Biochem; 2012 Sep; 58():66-82. PubMed ID: 22771437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Amount of Zeaxanthin Epoxidase But Not the Amount of Violaxanthin De-Epoxidase Is a Critical Determinant of Zeaxanthin Accumulation in Arabidopsis thaliana and Nicotiana tabacum.
    Küster L; Lücke R; Brabender C; Bethmann S; Jahns P
    Plant Cell Physiol; 2023 Oct; 64(10):1220-1230. PubMed ID: 37556318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of monogalactosyldiacylglycerol and other thylakoid lipids on violaxanthin de-epoxidation in liposomes.
    Latowski D; Kostecka A; Strzałka K
    Biochem Soc Trans; 2000 Dec; 28(6):810-2. PubMed ID: 11171216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional and structural characterization of domain truncated violaxanthin de-epoxidase.
    Hallin EI; Guo K; Åkerlund HE
    Physiol Plant; 2016 Aug; 157(4):414-21. PubMed ID: 26864799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox regulation of Arabidopsis mitochondrial citrate synthase.
    Schmidtmann E; König AC; Orwat A; Leister D; Hartl M; Finkemeier I
    Mol Plant; 2014 Jan; 7(1):156-69. PubMed ID: 24198232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional roles of the major chloroplast lipids in the violaxanthin cycle.
    Yamamoto HY
    Planta; 2006 Aug; 224(3):719-24. PubMed ID: 16532316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct isolation of a functional violaxanthin cycle domain from thylakoid membranes of higher plants.
    Goss R; Greifenhagen A; Bergner J; Volke D; Hoffmann R; Wilhelm C; Schaller-Laudel S
    Planta; 2017 Apr; 245(4):793-806. PubMed ID: 28025675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental expression of violaxanthin de-epoxidase in leaves of tobacco growing under high and low light.
    Bugos RC; Chang SH; Yamamoto HY
    Plant Physiol; 1999 Sep; 121(1):207-14. PubMed ID: 10482676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of hexagonal structure-forming lipids in diadinoxanthin and violaxanthin solubilization and de-epoxidation.
    Goss R; Lohr M; Latowski D; Grzyb J; Vieler A; Wilhelm C; Strzalka K
    Biochemistry; 2005 Mar; 44(10):4028-36. PubMed ID: 15751979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zeaxanthin epoxidation - an in vitro approach.
    Kuczyńska P; Latowski D; Niczyporuk S; Olchawa-Pajor M; Jahns P; Gruszecki WI; Strzałka K
    Acta Biochim Pol; 2012; 59(1):105-7. PubMed ID: 22428135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manipulation of the Xanthophyll Cycle Increases Plant Susceptibility to Sclerotinia sclerotiorum.
    Zhou J; Zeng L; Liu J; Xing D
    PLoS Pathog; 2015 May; 11(5):e1004878. PubMed ID: 25993128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.