These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 25747242)
1. Mycorrhizal limonium sinuatum (L.) mill. Enhances accumulation of lead and cadmium. Sheikh-Assadi M; Khandan-Mirkohi A; Alemardan A; Moreno-Jiménez E Int J Phytoremediation; 2015; 17(1-6):556-62. PubMed ID: 25747242 [TBL] [Abstract][Full Text] [Related]
2. Enhanced Pb Absorption by Hordeum vulgare L. and Helianthus annuus L. Plants Inoculated with an Arbuscular Mycorrhizal Fungi Consortium. Arias MS; Peña-Cabriales JJ; Alarcón A; Maldonado Vega M Int J Phytoremediation; 2015; 17(1-6):405-13. PubMed ID: 25495930 [TBL] [Abstract][Full Text] [Related]
3. Role of extrinsic arbuscular mycorrhizal fungi in heavy metal-contaminated wetlands with various soil moisture levels. Zheng S; Wang C; Shen Z; Quan Y; Liu X Int J Phytoremediation; 2015; 17(1-6):208-14. PubMed ID: 25397977 [TBL] [Abstract][Full Text] [Related]
4. Effect of Arbuscular Mycorrhizal Fungi On Yield and Phytoremediation Performance of Pot Marigold (Calendula officinalis L.) Under Heavy Metals Stress. Tabrizi L; Mohammadi S; Delshad M; Moteshare Zadeh B Int J Phytoremediation; 2015; 17(12):1244-52. PubMed ID: 26237494 [TBL] [Abstract][Full Text] [Related]
5. The effect of Cd on mycorrhizal development and enzyme activity of Glomus mosseae and Glomus intraradices in Astragalus sinicus L. Li Y; Peng J; Shi P; Zhao B Chemosphere; 2009 May; 75(7):894-9. PubMed ID: 19232430 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of mycorrhizal influence on the development and phytoremediation potential of Canavalia gladiata in Pb-contaminated soils. Souza LA; Andrade SA; Souza SC; Schiavinato MA Int J Phytoremediation; 2013; 15(5):465-76. PubMed ID: 23488172 [TBL] [Abstract][Full Text] [Related]
7. Metal phytoremediation by the halophyte Limoniastrum monopetalum (L.) Boiss: two contrasting ecotypes. Manousaki E; Galanaki K; Papadimitriou L; Kalogerakis N Int J Phytoremediation; 2014; 16(7-12):755-69. PubMed ID: 24933883 [TBL] [Abstract][Full Text] [Related]
8. Effect of arbuscular mycorrhizal fungi on trace metal uptake by sunflower plants grown on cadmium contaminated soil. Hassan SE; Hijri M; St-Arnaud M N Biotechnol; 2013 Sep; 30(6):780-7. PubMed ID: 23876814 [TBL] [Abstract][Full Text] [Related]
9. Contribution of AM inoculation and cattle manure to lead and cadmium phytoremediation by tobacco plants. Wang FY; Shi ZY; Xu XF; Wang XG; Li YJ Environ Sci Process Impacts; 2013 Apr; 15(4):794-801. PubMed ID: 23407649 [TBL] [Abstract][Full Text] [Related]
10. Cadmium accumulation in sunflower plants influenced by arbuscular mycorrhiza. de Andrade SA; da Silveira AP; Jorge RA; de Abreu MF Int J Phytoremediation; 2008; 10(1):1-13. PubMed ID: 18709928 [TBL] [Abstract][Full Text] [Related]
11. Assessment of arbuscular mycorrhizal fungi status and heavy metal accumulation characteristics of tree species in a lead-zinc mine area: potential applications for phytoremediation. Yang Y; Liang Y; Ghosh A; Song Y; Chen H; Tang M Environ Sci Pollut Res Int; 2015 Sep; 22(17):13179-93. PubMed ID: 25929455 [TBL] [Abstract][Full Text] [Related]
12. Uptake and Intraradical Immobilization of Cadmium by Arbuscular Mycorrhizal Fungi as Revealed by a Stable Isotope Tracer and Synchrotron Radiation μX-Ray Fluorescence Analysis. Chen B; Nayuki K; Kuga Y; Zhang X; Wu S; Ohtomo R Microbes Environ; 2018 Sep; 33(3):257-263. PubMed ID: 30122692 [TBL] [Abstract][Full Text] [Related]
13. Arbuscular mycorrhizal fungi alleviate Cd phytotoxicity by altering Cd subcellular distribution and chemical forms in Zea mays. Zhang XF; Hu ZH; Yan TX; Lu RR; Peng CL; Li SS; Jing YX Ecotoxicol Environ Saf; 2019 Apr; 171():352-360. PubMed ID: 30616152 [TBL] [Abstract][Full Text] [Related]
14. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. Schützendübel A; Polle A J Exp Bot; 2002 May; 53(372):1351-65. PubMed ID: 11997381 [TBL] [Abstract][Full Text] [Related]
15. Effectiveness of arbuscular mycorrhizal fungi in phytoremediation of lead- contaminated soil by vetiver grass. Bahraminia M; Zarei M; Ronaghi A; Ghasemi-Fasaei R Int J Phytoremediation; 2016; 18(7):730-7. PubMed ID: 26709443 [TBL] [Abstract][Full Text] [Related]
16. The potential of an energy crop "Conocarpus erectus" for lead phytoextraction and phytostabilization of chromium, nickel, and cadmium: An excellent option for the management of multi-metal contaminated soils. Tauqeer HM; Ur-Rahman M; Hussain S; Abbas F; Iqbal M Ecotoxicol Environ Saf; 2019 May; 173():273-284. PubMed ID: 30776560 [TBL] [Abstract][Full Text] [Related]
17. Hyperaccumulator oilcake manure as an alternative for chelate-induced phytoremediation of heavy metals contaminated alluvial soils. Mani D; Kumar C; Patel NK Int J Phytoremediation; 2015; 17(1-6):256-63. PubMed ID: 25397984 [TBL] [Abstract][Full Text] [Related]
18. Use of Arbuscular Mycorrhiza and Organic Amendments to Enhance Growth of Macaranga peltata (Roxb.) Müll. Arg. in Iron Ore Mine Wastelands. Rodrigues CR; Rodrigues BF Int J Phytoremediation; 2015; 17(1-6):485-92. PubMed ID: 25495939 [TBL] [Abstract][Full Text] [Related]
19. Earthworms and mycorrhization increase copper phytoextraction by Canavalia ensiformis in sandy soil. Santana NA; Ferreira PAA; Tarouco CP; Schardong IS; Antoniolli ZI; Nicoloso FT; Jacques RJS Ecotoxicol Environ Saf; 2019 Oct; 182():109383. PubMed ID: 31260919 [TBL] [Abstract][Full Text] [Related]
20. Remediation of lead and cadmium-contaminated soils. Salama AK; Osman KA; Gouda NA Int J Phytoremediation; 2016; 18(4):364-7. PubMed ID: 26515924 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]