BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 25747244)

  • 1. Effect of EDTA and Tannic Acid on the Removal of Cd, Ni, Pb and Cu from Artificially Contaminated Soil by Althaea rosea Cavan.
    Cay S; Uyanik A; Engin MS; Kutbay HG
    Int J Phytoremediation; 2015; 17(1-6):568-74. PubMed ID: 25747244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cadmium tolerance and accumulation of Althaea rosea Cav. and its potential as a hyperaccumulator under chemical enhancement.
    Liu JN; Zhou QX; Wang S; Sun T
    Environ Monit Assess; 2009 Feb; 149(1-4):419-27. PubMed ID: 18259884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth responses of three ornamental plants to Cd and Cd-Pb stress and their metal accumulation characteristics.
    Liu JN; Zhou QX; Sun T; Ma LQ; Wang S
    J Hazard Mater; 2008 Feb; 151(1):261-7. PubMed ID: 17869419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing the molarity of a EDTA washing solution for saturated-soil remediation of trace metal contaminated soils.
    Andrade MD; Prasher SO; Hendershot WH
    Environ Pollut; 2007 Jun; 147(3):781-90. PubMed ID: 17218042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surfactant-facilitated remediation of metal-contaminated soils: efficacy and toxicological consequences to earthworms.
    Slizovskiy IB; Kelsey JW; Hatzinger PB
    Environ Toxicol Chem; 2011 Jan; 30(1):112-23. PubMed ID: 20853447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of EDTA- and citric acid-enhanced phytoextraction of heavy metals in artificially metal contaminated soil by Typha angustifolia.
    Muhammad D; Chen F; Zhao J; Zhang G; Wu F
    Int J Phytoremediation; 2009 Aug; 11(6):558-74. PubMed ID: 19810355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and chemical enhancement of two ornamental plants for phytoremediation.
    Liu JN; Zhou QX; Sun T; Ma LQ; Wang S
    Bull Environ Contam Toxicol; 2008 Mar; 80(3):260-5. PubMed ID: 18292957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The EDTA effect on phytoextraction of single and combined metals-contaminated soils using rainbow pink (Dianthus chinensis).
    Lai HY; Chen ZS
    Chemosphere; 2005 Aug; 60(8):1062-71. PubMed ID: 15993153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The potential of an energy crop "Conocarpus erectus" for lead phytoextraction and phytostabilization of chromium, nickel, and cadmium: An excellent option for the management of multi-metal contaminated soils.
    Tauqeer HM; Ur-Rahman M; Hussain S; Abbas F; Iqbal M
    Ecotoxicol Environ Saf; 2019 May; 173():273-284. PubMed ID: 30776560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced accumulation of Cd in castor (Ricinus communis L) by soil-applied chelators.
    Chhajro MA; Rizwan MS; Guoyong H; Jun Z; Kubar KA; Hongqing H
    Int J Phytoremediation; 2016; 18(7):664-70. PubMed ID: 26588431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of EDTA on the rate of accumulation and root/shoot partitioning of cadmium in mature dwarf sunflowers.
    Meighan MM; Fenus T; Karey E; MacNeil J
    Chemosphere; 2011 Jun; 83(11):1539-45. PubMed ID: 21306756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tolerance and distribution of cadmium in an ornamental species
    Huang Y; Zu L; Zhang M; Yang T; Zhou M; Shi C; Shi F; Zhang W
    Int J Phytoremediation; 2020; 22(7):713-724. PubMed ID: 31885282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Ni-tolerant Bacillus spp. and Althea rosea L. in the phytoremediation of Ni-contaminated soils.
    Khan WU; Yasin NA; Ahmad SR; Ali A; Ahmed S; Ahmad A
    Int J Phytoremediation; 2017 May; 19(5):470-477. PubMed ID: 27739873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accumulation of Cu, Pb, Ni and Zn in the halophyte plant Atriplex grown on polluted soil.
    Kachout SS; Mansoura AB; Mechergui R; Leclerc JC; Rejeb MN; Ouerghi Z
    J Sci Food Agric; 2012 Jan; 92(2):336-42. PubMed ID: 21935956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Phytoextraction of Lead from Artificially Contaminated Soil by Mirabilis jalapa with Chelating Agents.
    Yan L; Li C; Zhang J; Moodley O; Liu S; Lan C; Gao Q; Zhang W
    Bull Environ Contam Toxicol; 2017 Aug; 99(2):208-212. PubMed ID: 28646396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the phytoremediation efficiency of Ricinus communis L. and methane uptake from cadmium and nickel-contaminated soil using spent mushroom substrate.
    Sun Y; Wen C; Liang X; He C
    Environ Sci Pollut Res Int; 2018 Nov; 25(32):32603-32616. PubMed ID: 30242654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chelant extraction of heavy metals from contaminated soils using new selective EDTA derivatives.
    Zhang T; Liu JM; Huang XF; Xia B; Su CY; Luo GF; Xu YW; Wu YX; Mao ZW; Qiu RL
    J Hazard Mater; 2013 Nov; 262():464-71. PubMed ID: 24076482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redistribution of fractions of zinc, cadmium, nickel, copper, and lead in contaminated calcareous soils treated with EDTA.
    Jalali M; Khanlari ZV
    Arch Environ Contam Toxicol; 2007 Nov; 53(4):519-32. PubMed ID: 17657454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytoextraction of zinc, copper, nickel and lead from a contaminated soil by different species of Brassica.
    Purakayastha TJ; Viswanath T; Bhadraray S; Chhonkar PK; Adhikari PP; Suribabu K
    Int J Phytoremediation; 2008; 10(1):61-72. PubMed ID: 18709932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioaccumulation in Porcellio scaber (Crustacea, Isopoda) as a measure of the EDTA remediation efficiency of metal-polluted soil.
    Udovic M; Drobne D; Lestan D
    Environ Pollut; 2009 Oct; 157(10):2822-9. PubMed ID: 19464095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.