These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 25747441)

  • 1. Comparing global and local likelihood score thresholds in multiclass laplacian-modified Naive Bayes protein target prediction.
    Drakakis G; Koutsoukas A; Brewerton SC; Bodkin MJ; Evans DA; Bender A
    Comb Chem High Throughput Screen; 2015; 18(3):323-30. PubMed ID: 25747441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico target predictions: defining a benchmarking data set and comparison of performance of the multiclass Naïve Bayes and Parzen-Rosenblatt window.
    Koutsoukas A; Lowe R; Kalantarmotamedi Y; Mussa HY; Klaffke W; Mitchell JB; Glen RC; Bender A
    J Chem Inf Model; 2013 Aug; 53(8):1957-66. PubMed ID: 23829430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ligand-target prediction using Winnow and naive Bayesian algorithms and the implications of overall performance statistics.
    Nigsch F; Bender A; Jenkins JL; Mitchell JB
    J Chem Inf Model; 2008 Dec; 48(12):2313-25. PubMed ID: 19055411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MOST: most-similar ligand based approach to target prediction.
    Huang T; Mi H; Lin CY; Zhao L; Zhong LL; Liu FB; Zhang G; Lu AP; Bian ZX;
    BMC Bioinformatics; 2017 Mar; 18(1):165. PubMed ID: 28284192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PASS Targets: Ligand-based multi-target computational system based on a public data and naïve Bayes approach.
    Pogodin PV; Lagunin AA; Filimonov DA; Poroikov VV
    SAR QSAR Environ Res; 2015; 26(10):783-93. PubMed ID: 26305108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HitPickV2: a web server to predict targets of chemical compounds.
    Hamad S; Adornetto G; Naveja JJ; Chavan Ravindranath A; Raffler J; Campillos M
    Bioinformatics; 2019 Apr; 35(7):1239-1240. PubMed ID: 30169615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Target prediction utilising negative bioactivity data covering large chemical space.
    Mervin LH; Afzal AM; Drakakis G; Lewis R; Engkvist O; Bender A
    J Cheminform; 2015; 7():51. PubMed ID: 26500705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating error rates in bioactivity databases.
    Tiikkainen P; Bellis L; Light Y; Franke L
    J Chem Inf Model; 2013 Oct; 53(10):2499-505. PubMed ID: 24160896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Training based on ligand efficiency improves prediction of bioactivities of ligands and drug target proteins in a machine learning approach.
    Sugaya N
    J Chem Inf Model; 2013 Oct; 53(10):2525-37. PubMed ID: 24020509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery of multitarget-directed ligands against Alzheimer's disease through systematic prediction of chemical-protein interactions.
    Fang J; Li Y; Liu R; Pang X; Li C; Yang R; He Y; Lian W; Liu AL; Du GH
    J Chem Inf Model; 2015 Jan; 55(1):149-64. PubMed ID: 25531792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coverage and bias in chemical library design.
    Gregori-Puigjané E; Mestres J
    Curr Opin Chem Biol; 2008 Jun; 12(3):359-65. PubMed ID: 18423416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HitPick: a web server for hit identification and target prediction of chemical screenings.
    Liu X; Vogt I; Haque T; Campillos M
    Bioinformatics; 2013 Aug; 29(15):1910-2. PubMed ID: 23716196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicted Biological Activity of Purchasable Chemical Space.
    Irwin JJ; Gaskins G; Sterling T; Mysinger MM; Keiser MJ
    J Chem Inf Model; 2018 Jan; 58(1):148-164. PubMed ID: 29193970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational models for the classification of mPGES-1 inhibitors with fingerprint descriptors.
    Xia Z; Yan A
    Mol Divers; 2017 Aug; 21(3):661-675. PubMed ID: 28484935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diversity selection of compounds based on 'protein affinity fingerprints' improves sampling of bioactive chemical space.
    Nguyen HP; Koutsoukas A; Mohd Fauzi F; Drakakis G; Maciejewski M; Glen RC; Bender A
    Chem Biol Drug Des; 2013 Sep; 82(3):252-66. PubMed ID: 23647865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Template CoMFA Generates Single 3D-QSAR Models that, for Twelve of Twelve Biological Targets, Predict All ChEMBL-Tabulated Affinities.
    Cramer RD
    PLoS One; 2015; 10(6):e0129307. PubMed ID: 26065424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How diverse are diversity assessment methods? A comparative analysis and benchmarking of molecular descriptor space.
    Koutsoukas A; Paricharak S; Galloway WR; Spring DR; Ijzerman AP; Glen RC; Marcus D; Bender A
    J Chem Inf Model; 2014 Jan; 54(1):230-42. PubMed ID: 24289493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. OCEAN: Optimized Cross rEActivity estimatioN.
    Czodrowski P; Bolick WG
    J Chem Inf Model; 2016 Oct; 56(10):2013-2023. PubMed ID: 27668814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CHIPMUNK: A Virtual Synthesizable Small-Molecule Library for Medicinal Chemistry, Exploitable for Protein-Protein Interaction Modulators.
    Humbeck L; Weigang S; Schäfer T; Mutzel P; Koch O
    ChemMedChem; 2018 Mar; 13(6):532-539. PubMed ID: 29392860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SimG: an alignment based method for evaluating the similarity of small molecules and binding sites.
    Cai C; Gong J; Liu X; Gao D; Li H
    J Chem Inf Model; 2013 Aug; 53(8):2103-15. PubMed ID: 23889471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.