These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 25747441)

  • 21. "Bayes affinity fingerprints" improve retrieval rates in virtual screening and define orthogonal bioactivity space: when are multitarget drugs a feasible concept?
    Bender A; Jenkins JL; Glick M; Deng Z; Nettles JH; Davies JW
    J Chem Inf Model; 2006; 46(6):2445-56. PubMed ID: 17125186
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automated ligand- and structure-based protocol for in silico prediction of human serum albumin binding.
    Hall ML; Jorgensen WL; Whitehead L
    J Chem Inf Model; 2013 Apr; 53(4):907-22. PubMed ID: 23472823
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioactivity-guided navigation of chemical space.
    Bon RS; Waldmann H
    Acc Chem Res; 2010 Aug; 43(8):1103-14. PubMed ID: 20481515
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In silico target prediction for elucidating the mode of action of herbicides including prospective validation.
    Chiddarwar RK; Rohrer SG; Wolf A; Tresch S; Wollenhaupt S; Bender A
    J Mol Graph Model; 2017 Jan; 71():70-79. PubMed ID: 27846423
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prediction of biological targets for compounds using multiple-category Bayesian models trained on chemogenomics databases.
    Nidhi ; Glick M; Davies JW; Jenkins JL
    J Chem Inf Model; 2006; 46(3):1124-33. PubMed ID: 16711732
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Method for comparing the structures of protein ligand-binding sites and application for predicting protein-drug interactions.
    Minai R; Matsuo Y; Onuki H; Hirota H
    Proteins; 2008 Jul; 72(1):367-81. PubMed ID: 18214952
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Polypharmacology rescored: protein-ligand interaction profiles for remote binding site similarity assessment.
    Salentin S; Haupt VJ; Daminelli S; Schroeder M
    Prog Biophys Mol Biol; 2014; 116(2-3):174-86. PubMed ID: 24923864
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Knowledge-guided docking: accurate prospective prediction of bound configurations of novel ligands using Surflex-Dock.
    Cleves AE; Jain AN
    J Comput Aided Mol Des; 2015 Jun; 29(6):485-509. PubMed ID: 25940276
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dissecting kinase profiling data to predict activity and understand cross-reactivity of kinase inhibitors.
    Niijima S; Shiraishi A; Okuno Y
    J Chem Inf Model; 2012 Apr; 52(4):901-12. PubMed ID: 22414491
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Completing sparse and disconnected protein-protein network by deep learning.
    Huang L; Liao L; Wu CH
    BMC Bioinformatics; 2018 Mar; 19(1):103. PubMed ID: 29566671
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An extensive and diverse set of molecular overlays for the validation of pharmacophore programs.
    Giangreco I; Cosgrove DA; Packer MJ
    J Chem Inf Model; 2013 Apr; 53(4):852-66. PubMed ID: 23565904
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicting target-ligand interactions using protein ligand-binding site and ligand substructures.
    Wang C; Liu J; Luo F; Deng Z; Hu QN
    BMC Syst Biol; 2015; 9 Suppl 1(Suppl 1):S2. PubMed ID: 25707321
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In Silico Target Druggability Assessment: From Structural to Systemic Approaches.
    Trosset JY; Cavé C
    Methods Mol Biol; 2019; 1953():63-88. PubMed ID: 30912016
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prediction of Protein Pairs Sharing Common Active Ligands Using Protein Sequence, Structure, and Ligand Similarity.
    Chen YC; Tolbert R; Aronov AM; McGaughey G; Walters WP; Meireles L
    J Chem Inf Model; 2016 Sep; 56(9):1734-45. PubMed ID: 27559831
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative Polypharmacology Profiling Based on a Multifingerprint Similarity Predictive Approach.
    Ciriaco F; Gambacorta N; Alberga D; Nicolotti O
    J Chem Inf Model; 2021 Oct; 61(10):4868-4876. PubMed ID: 34570498
    [TBL] [Abstract][Full Text] [Related]  

  • 36. OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins.
    Harder E; Damm W; Maple J; Wu C; Reboul M; Xiang JY; Wang L; Lupyan D; Dahlgren MK; Knight JL; Kaus JW; Cerutti DS; Krilov G; Jorgensen WL; Abel R; Friesner RA
    J Chem Theory Comput; 2016 Jan; 12(1):281-96. PubMed ID: 26584231
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ligand prediction from protein sequence and small molecule information using support vector machines and fingerprint descriptors.
    Geppert H; Humrich J; Stumpfe D; Gärtner T; Bajorath J
    J Chem Inf Model; 2009 Apr; 49(4):767-79. PubMed ID: 19309114
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Shaping the interaction landscape of bioactive molecules.
    Gfeller D; Michielin O; Zoete V
    Bioinformatics; 2013 Dec; 29(23):3073-9. PubMed ID: 24048355
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Virtual high throughput screening using combined random forest and flexible docking.
    Plewczynski D; von Grotthuss M; Rychlewski L; Ginalski K
    Comb Chem High Throughput Screen; 2009 Jun; 12(5):484-9. PubMed ID: 19519327
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinome-Wide Profiling Prediction of Small Molecules.
    Sorgenfrei FA; Fulle S; Merget B
    ChemMedChem; 2018 Mar; 13(6):495-499. PubMed ID: 28544552
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.