These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 25747446)

  • 1. The Monte Carlo method based on eclectic data as an efficient tool for predictions of endpoints for nanomaterials - two examples of application.
    Toropov AA; Toropova AP; Veselinović AM; Veselinović JB; Nesmerak K; Raska I; Duchowicz PR; Castro EA; Kudyshkin VO; Leszczynska D; Leszczynski J
    Comb Chem High Throughput Screen; 2015; 18(4):376-86. PubMed ID: 25747446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of Quasi-SMILES and Monte Carlo Optimization to Develop Quantitative Feature Property/Activity Relationships (QFPR/QFAR) for Nanomaterials.
    Toropov AA; Rallo R; Toropova AP
    Curr Top Med Chem; 2015; 15(18):1837-44. PubMed ID: 25961527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanomaterials: Quasi-SMILES as a flexible basis for regulation and environmental risk assessment.
    Toropova AP; Toropov AA
    Sci Total Environ; 2022 Jun; 823():153747. PubMed ID: 35149067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal nano-descriptors as translators of eclectic data into prediction of the cell membrane damage by means of nano metal-oxides.
    Toropova AP; Toropov AA; Benfenati E; Korenstein R; Leszczynska D; Leszczynski J
    Environ Sci Pollut Res Int; 2015 Jan; 22(1):745-57. PubMed ID: 25223357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Monte Carlo Method as a Tool to Build up Predictive QSPR/QSAR.
    Toropov AA; Toropova AP
    Curr Comput Aided Drug Des; 2020; 16(3):197-206. PubMed ID: 30919781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasi-SMILES as a basis to build up models of endpoints for nanomaterials.
    Toropova AP; Toropov AA
    Environ Technol; 2023 Dec; 44(28):4460-4467. PubMed ID: 35748421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of the Monte Carlo Method for the Prediction of Behavior of Peptides.
    Toropova AP; Toropov AA
    Curr Protein Pept Sci; 2019; 20(12):1151-1157. PubMed ID: 30674254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal descriptor as a translator of eclectic information into the prediction of membrane damage by means of various TiO(2) nanoparticles.
    Toropova AP; Toropov AA
    Chemosphere; 2013 Nov; 93(10):2650-5. PubMed ID: 24161577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. QSAR as a random event: modeling of nanoparticles uptake in PaCa2 cancer cells.
    Toropov AA; Toropova AP; Puzyn T; Benfenati E; Gini G; Leszczynska D; Leszczynski J
    Chemosphere; 2013 Jun; 92(1):31-7. PubMed ID: 23566368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A quasi-QSPR modelling for the photocatalytic decolourization rate constants and cellular viability (CV%) of nanoparticles by CORAL.
    Toropova AP; Toropov AA; Benfenati E
    SAR QSAR Environ Res; 2015; 26(1):29-40. PubMed ID: 25608955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilization of the Monte Carlo Method to Build up QSAR Models for Hemolysis and Cytotoxicity of Antimicrobial Peptides.
    Toropova AP; Toropov AA; Beeg M; Gobbi M; Salmona M
    Curr Drug Discov Technol; 2017; 14(4):229-243. PubMed ID: 28545350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nano-QSAR in cell biology: Model of cell viability as a mathematical function of available eclectic data.
    Toropova AP; Toropov AA
    J Theor Biol; 2017 Mar; 416():113-118. PubMed ID: 28087422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nano-QSAR: Model of mutagenicity of fullerene as a mathematical function of different conditions.
    Toropova AP; Toropov AA; Veselinović AM; Veselinović JB; Benfenati E; Leszczynska D; Leszczynski J
    Ecotoxicol Environ Saf; 2016 Feb; 124():32-36. PubMed ID: 26452192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CORAL: Monte Carlo Method to Predict Endpoints for Medical Chemistry.
    Toropova AP; Toropov AA
    Mini Rev Med Chem; 2018 Feb; 18(5):382-391. PubMed ID: 28971771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of quasi-SMILES to build models based on quantitative results from experiments with nanomaterials.
    Toropov AA; Kjeldsen F; Toropova AP
    Chemosphere; 2022 Sep; 303(Pt 2):135086. PubMed ID: 35618064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. OCWLGI descriptors: theory and praxis.
    Toropov AA; Toropova AP; Benfenati E; Gini G
    Curr Comput Aided Drug Des; 2013 Jun; 9(2):226-32. PubMed ID: 23700994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. QSPR modeling bioconcentration factor (BCF) by balance of correlations.
    Toropov AA; Toropova AP; Benfenati E
    Eur J Med Chem; 2009 Jun; 44(6):2544-51. PubMed ID: 19232785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The coefficient of conformism of a correlative prediction (CCCP): Building up reliable nano-QSPRs/QSARs for endpoints of nanoparticles in different experimental conditions encoded via quasi-SMILES.
    Toropova AP; Toropov AA
    Sci Total Environ; 2024 Jun; 927():172119. PubMed ID: 38569951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and development of novel focal adhesion kinase (FAK) inhibitors using Monte Carlo method with index of ideality of correlation to validate QSAR.
    Kumar P; Kumar A; Sindhu J
    SAR QSAR Environ Res; 2019 Feb; 30(2):63-80. PubMed ID: 30793981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal descriptor as a translator of eclectic information into the prediction of membrane damage: the case of a group of ZnO and TiO2 nanoparticles.
    Toropova AP; Toropov AA; Benfenati E; Puzyn T; Leszczynska D; Leszczynski J
    Ecotoxicol Environ Saf; 2014 Oct; 108():203-9. PubMed ID: 25086232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.