These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 25747641)

  • 1. Ultrasonic imaging of foreign inclusions and blood vessels through thick skull bones.
    Shapoori K; Sadler J; Ahmed Z; Wydra A; Maeva E; Malyarenko E; Maev R
    Mil Med; 2015 Mar; 180(3 Suppl):104-8. PubMed ID: 25747641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Ultrasonic-Adaptive Beamforming Method and Its Application for Trans-skull Imaging of Certain Types of Head Injuries; Part I: Transmission Mode.
    Shapoori K; Sadler J; Wydra A; Malyarenko EV; Sinclair AN; Maev RG
    IEEE Trans Biomed Eng; 2015 May; 62(5):1253-64. PubMed ID: 25423646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Ultrasonic Adaptive Beamforming Method and Its Application for Trans-Skull Imaging of Certain Types of Head Injuries; Part II: Reception Mode and Adaptive Imaging.
    Shapoori K; Sinclair AN; Maev RG
    IEEE Trans Biomed Eng; 2023 Feb; 70(2):544-552. PubMed ID: 35939463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive focusing for transcranial ultrasound imaging using dual arrays.
    Vignon F; Aubry JF; Tanter M; Margoum A; Fink M
    J Acoust Soc Am; 2006 Nov; 120(5 Pt 1):2737-45. PubMed ID: 17139734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrashort echo-time MRI versus CT for skull aberration correction in MR-guided transcranial focused ultrasound: In vitro comparison on human calvaria.
    Miller GW; Eames M; Snell J; Aubry JF
    Med Phys; 2015 May; 42(5):2223-33. PubMed ID: 25979016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcranial ultrasound imaging with speed of sound-based phase correction: a numerical study.
    Wang T; Jing Y
    Phys Med Biol; 2013 Oct; 58(19):6663-81. PubMed ID: 24018632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a practical ultrasonic approach for simultaneous measurement of the thickness and the sound speed in human skull bones: a laboratory phantom study.
    Wydra A; Malyarenko E; Shapoori K; Maev RG
    Phys Med Biol; 2013 Feb; 58(4):1083-102. PubMed ID: 23363729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contrast-enhanced transcranial two-dimensional ultrasound imaging using shear-mode conversion at low frequency.
    Lucht B; Hubbell A; Hynynen K
    Ultrasound Med Biol; 2013 Feb; 39(2):332-44. PubMed ID: 23245822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct phase projection and transcranial focusing of ultrasound for brain therapy.
    Pinton GF; Aubry JF; Tanter M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jun; 59(6):1149-59. PubMed ID: 22711410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rotational-invariant speckle-scanning ultrasonography through thick bones.
    Liang S; Wang L
    Sci Rep; 2021 Jul; 11(1):14178. PubMed ID: 34244534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasound focusing using magnetic resonance acoustic radiation force imaging: application to ultrasound transcranial therapy.
    Hertzberg Y; Volovick A; Zur Y; Medan Y; Vitek S; Navon G
    Med Phys; 2010 Jun; 37(6):2934-42. PubMed ID: 20632605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation of ultrasound phase with physical skull properties.
    Clement GT; Hynynen K
    Ultrasound Med Biol; 2002 May; 28(5):617-24. PubMed ID: 12079698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel transcranial ultrasound imaging method with diverging wave transmission and deep learning approach.
    Du B; Wang J; Zheng H; Xiao C; Fang S; Lu M; Mao R
    Comput Methods Programs Biomed; 2020 Apr; 186():105308. PubMed ID: 31978869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and Implementation of a Transmit/Receive Ultrasound Phased Array for Brain Applications.
    Liu HL; Tsai CH; Jan CK; Chang HY; Huang SM; Li ML; Qiu W; Zheng H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Oct; 65(10):1756-1767. PubMed ID: 30010555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental demonstration of passive acoustic imaging in the human skull cavity using CT-based aberration corrections.
    Jones RM; O'Reilly MA; Hynynen K
    Med Phys; 2015 Jul; 42(7):4385-400. PubMed ID: 26133635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ray theory-based compounded plane wave ultrasound imaging for aberration corrected transcranial imaging: Phantom experiments and simulations.
    Jiang C; Li B; Xie L; Liu C; Xu K; Zhan Y; Ta D
    Ultrasonics; 2023 Dec; 135():107124. PubMed ID: 37541030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of analytical and numerical approaches for CT-based aberration correction in transcranial passive acoustic imaging.
    Jones RM; Hynynen K
    Phys Med Biol; 2016 Jan; 61(1):23-36. PubMed ID: 26605827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Two-dimensional echoencephalography in focal brain pathology].
    Shokurov NN; Likhterman LB
    Vopr Neirokhir; 1976; (5):43-9. PubMed ID: 1014517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implementation of a Skull-Conformal Phased Array for Transcranial Focused Ultrasound Therapy.
    Adams C; Jones RM; Yang SD; Kan WM; Leung K; Zhou Y; Lee KU; Huang Y; Hynynen K
    IEEE Trans Biomed Eng; 2021 Nov; 68(11):3457-3468. PubMed ID: 33950835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasonic reflection mode computed tomography through a skull bone.
    Ylitalo J; Koivukangas J; Oksman J
    IEEE Trans Biomed Eng; 1990 Nov; 37(11):1059-66. PubMed ID: 2276753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.