BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 25747777)

  • 1. In silico analysis of binding of neurotoxic venom ligands with acetylcholinesterase for therapeutic use in treatment of Alzheimer's disease.
    Waqar M; Batool S
    J Theor Biol; 2015 May; 372():107-17. PubMed ID: 25747777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of an acetylcholinesterase-fasciculin complex: interaction of a three-fingered toxin from snake venom with its target.
    Harel M; Kleywegt GJ; Ravelli RB; Silman I; Sussman JL
    Structure; 1995 Dec; 3(12):1355-66. PubMed ID: 8747462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical analysis of the structure of the peptide fasciculin and its docking to acetylcholinesterase.
    van den Born HK; Radić Z; Marchot P; Taylor P; Tsigelny I
    Protein Sci; 1995 Apr; 4(4):703-15. PubMed ID: 7613468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structures of recombinant native and E202Q mutant human acetylcholinesterase complexed with the snake-venom toxin fasciculin-II.
    Kryger G; Harel M; Giles K; Toker L; Velan B; Lazar A; Kronman C; Barak D; Ariel N; Shafferman A; Silman I; Sussman JL
    Acta Crystallogr D Biol Crystallogr; 2000 Nov; 56(Pt 11):1385-94. PubMed ID: 11053835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Silico Analysis of Binding Interaction of Mamba Toxins with M4 and M2 Muscarinic Acetylcholine Receptors for Therapeutic Use in Alzheimer's Disease.
    Waqar M; Kamal MA; Batool S
    CNS Neurol Disord Drug Targets; 2015; 14(8):1031-40. PubMed ID: 26295818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid ligand fishing for identification of acetylcholinesterase-binding peptides in snake venom reveals new properties of dendrotoxins.
    Vanzolini KL; Ainsworth S; Bruyneel B; Herzig V; Seraus MGL; Somsen GW; Casewell NR; Cass QB; Kool J
    Toxicon; 2018 Sep; 152():1-8. PubMed ID: 29990530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of mouse acetylcholinesterase by fasciculin: crystal structure of the complex and mutagenesis of fasciculin.
    Marchot P; Bourne Y; Prowse CN; Bougis PE; Taylor P
    Toxicon; 1998 Nov; 36(11):1613-22. PubMed ID: 9792178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping of the binding landscape for a picomolar protein-protein complex through computation and experiment.
    Aizner Y; Sharabi O; Shirian J; Dakwar GR; Risman M; Avraham O; Shifman J
    Structure; 2014 Apr; 22(4):636-45. PubMed ID: 24613488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acetylcholinesterases from Elapidae snake venoms: biochemical, immunological and enzymatic characterization.
    Frobert Y; Créminon C; Cousin X; Rémy MH; Chatel JM; Bon S; Bon C; Grassi J
    Biochim Biophys Acta; 1997 May; 1339(2):253-67. PubMed ID: 9187246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The fasciculin-acetylcholinesterase interaction].
    Marchot P
    J Soc Biol; 1999; 193(6):505-8. PubMed ID: 10783708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preliminary X-ray analysis of crystals of fasciculin 1, a potent acetylcholinesterase inhibitor from green mamba venom.
    Ménez R; Ducruix A
    J Mol Biol; 1990 Nov; 216(2):233-4. PubMed ID: 2254925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fasciculins, anticholinesterase toxins from the venom of the green mamba Dendroaspis angusticeps.
    Karlsson E; Mbugua PM; Rodriguez-Ithurralde D
    J Physiol (Paris); 1984; 79(4):232-40. PubMed ID: 6530667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational transitions in protein-protein association: binding of fasciculin-2 to acetylcholinesterase.
    Bui JM; Radic Z; Taylor P; McCammon JA
    Biophys J; 2006 May; 90(9):3280-7. PubMed ID: 16473897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing Second Generation Anti-Alzheimer Compounds as Inhibitors of Human Acetylcholinesterase: Computational Screening of Synthetic Molecules and Dietary Phytochemicals.
    Amat-Ur-Rasool H; Ahmed M
    PLoS One; 2015; 10(9):e0136509. PubMed ID: 26325402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of acetylcholinesterase inhibition by fasciculin: a 5-ns molecular dynamics simulation.
    Tai K; Shen T; Henchman RH; Bourne Y; Marchot P; McCammon JA
    J Am Chem Soc; 2002 May; 124(21):6153-61. PubMed ID: 12022850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new role for the nonpathogenic nonsynonymous single-nucleotide polymorphisms of acetylcholinesterase in the treatment of Alzheimer's disease: a computational study.
    Saravanaraman P; Chinnadurai RK; Boopathy R
    J Comput Biol; 2014 Aug; 21(8):632-47. PubMed ID: 24611490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 1.9-A resolution structure of fasciculin 1, an anti-acetylcholinesterase toxin from green mamba snake venom.
    le Du MH; Marchot P; Bougis PE; Fontecilla-Camps JC
    J Biol Chem; 1992 Nov; 267(31):22122-30. PubMed ID: 1429564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and characterization of a chimeric peptide derived from fasciculin that inhibits acetylcholinesterase.
    Falkenstein RJ; Gornalusse GG; Peña C
    J Pept Sci; 2004 Jun; 10(6):342-9. PubMed ID: 15214439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying ligand-receptor interactions for gorge-spanning acetylcholinesterase inhibitors for the treatment of Alzheimer's disease.
    Martis EA; Chandarana RC; Shaikh MS; Ambre PK; D'Souza JS; Iyer KR; Coutinho EC; Nandan SR; Pissurlenkar RR
    J Biomol Struct Dyn; 2015; 33(5):1107-25. PubMed ID: 24905476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron paramagnetic resonance reveals altered topography of the active center gorge of acetylcholinesterase after binding of fasciculin to the peripheral site.
    Sentjurc M; Pecar S; Stojan J; Marchot P; Radić Z; Grubic Z
    Biochim Biophys Acta; 1999 Mar; 1430(2):349-58. PubMed ID: 10082962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.