BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 25748018)

  • 21. Biochemical characterization of cellulose-binding proteins (CBPA and CBPB) from the rumen cellulolytic bacterium Eubacterium cellulosolvens 5.
    Yoshimatsu M; Toyoda A; Onizawa N; Nakamura Y; Minato H
    Biosci Biotechnol Biochem; 2007 Oct; 71(10):2577-80. PubMed ID: 17928689
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of the PT region of EngD and HLD of CbpA on solubility, catalytic activity and purification characteristics of EngD-CBD(CbpA) fusions from Clostridium cellulovorans.
    Yeh M; Craig S; Lum MG; Foong FC
    J Biotechnol; 2005 Mar; 116(3):233-44. PubMed ID: 15707684
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Production of minicellulosomes for the enhanced hydrolysis of cellulosic substrates by recombinant Corynebacterium glutamicum.
    Hyeon JE; Jeon WJ; Whang SY; Han SO
    Enzyme Microb Technol; 2011 Apr; 48(4-5):371-7. PubMed ID: 22112952
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cell-surface binding domains from Clostridium cellulovorans can be used for surface display of cellulosomal scaffoldins in Lactococcus lactis.
    Tarraran L; Gandini C; Luganini A; Mazzoli R
    Biotechnol J; 2021 Aug; 16(8):e2100064. PubMed ID: 34019730
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of carbon source on the cellulosomal subpopulations of Clostridium cellulovorans.
    Han SO; Yukawa H; Inui M; Doi RH
    Microbiology (Reading); 2005 May; 151(Pt 5):1491-1497. PubMed ID: 15870459
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolic and process engineering of Clostridium cellulovorans for biofuel production from cellulose.
    Yang X; Xu M; Yang ST
    Metab Eng; 2015 Nov; 32():39-48. PubMed ID: 26365585
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering Clostridium cellulovorans for highly selective n-butanol production from cellulose in consolidated bioprocessing.
    Bao T; Hou W; Wu X; Lu L; Zhang X; Yang ST
    Biotechnol Bioeng; 2021 Jul; 118(7):2703-2718. PubMed ID: 33844271
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structures of exoglucanase from Clostridium cellulovorans: cellotetraose binding and cleavage.
    Tsai LC; Amiraslanov I; Chen HR; Chen YW; Lee HL; Liang PH; Liaw YC
    Acta Crystallogr F Struct Biol Commun; 2015 Oct; 71(Pt 10):1264-72. PubMed ID: 26457517
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A large gene cluster for the Clostridium cellulovorans cellulosome.
    Tamaru Y; Karita S; Ibrahim A; Chan H; Doi RH
    J Bacteriol; 2000 Oct; 182(20):5906-10. PubMed ID: 11004194
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transcriptomic Responses of the Interactions between Clostridium cellulovorans 743B and Rhodopseudomonas palustris CGA009 in a Cellulose-Grown Coculture for Enhanced Hydrogen Production.
    Lu H; Chen J; Jia Y; Cai M; Lee PKH
    Appl Environ Microbiol; 2016 Aug; 82(15):4546-4559. PubMed ID: 27208134
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enzymatic Characterization of Unused Biomass Degradation Using the
    Eljonaid MY; Tomita H; Okazaki F; Tamaru Y
    Microorganisms; 2022 Dec; 10(12):. PubMed ID: 36557767
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exoproteome profiles of Clostridium cellulovorans grown on various carbon sources.
    Matsui K; Bae J; Esaka K; Morisaka H; Kuroda K; Ueda M
    Appl Environ Microbiol; 2013 Nov; 79(21):6576-84. PubMed ID: 23956399
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Clostridium cellulovorans metabolism of cellulose as studied by comparative proteomic approach.
    Usai G; Cirrincione S; Re A; Manfredi M; Pagnani A; Pessione E; Mazzoli R
    J Proteomics; 2020 Mar; 216():103667. PubMed ID: 31982546
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The interaction of carbohydrate-binding modules with insoluble non-crystalline cellulose is enthalpically driven.
    Boraston AB
    Biochem J; 2005 Jan; 385(Pt 2):479-84. PubMed ID: 15487986
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of the cellulolytic complex (cellulosome) from Ruminococcus albus.
    Ohara H; Karita S; Kimura T; Sakka K; Ohmiya K
    Biosci Biotechnol Biochem; 2000 Feb; 64(2):254-60. PubMed ID: 10737178
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cellulosome and noncellulosomal cellulases of Clostridium cellulovorans.
    Doi RH; Park JS; Liu CC; Malburg LM; Tamaru Y; Ichiishi A; Ibrahim A
    Extremophiles; 1998 May; 2(2):53-60. PubMed ID: 9672678
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of the mesophilic cellulosome-producing Clostridium cellulovorans genome with other cellulosome-related clostridial genomes.
    Tamaru Y; Miyake H; Kuroda K; Nakanishi A; Matsushima C; Doi RH; Ueda M
    Microb Biotechnol; 2011 Jan; 4(1):64-73. PubMed ID: 21255373
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of the cellulose-binding domain from Clostridium cellulovorans on the supramolecular structure of cellulose fibers.
    Ciolacu D; Kovac J; Kokol V
    Carbohydr Res; 2010 Mar; 345(5):621-30. PubMed ID: 20122684
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of a cellulose binding domain from Clostridium cellulovorans endoglucanase-xylanase D and its use as a fusion partner for soluble protein expression in Escherichia coli.
    Xu Y; Foong FC
    J Biotechnol; 2008 Jul; 135(4):319-25. PubMed ID: 18585812
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure, dynamics, and specificity of endoglucanase D from Clostridium cellulovorans.
    Bianchetti CM; Brumm P; Smith RW; Dyer K; Hura GL; Rutkoski TJ; Phillips GN
    J Mol Biol; 2013 Nov; 425(22):4267-85. PubMed ID: 23751954
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.