These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 25748374)

  • 1. Palm oil derived trimethylolpropane triesters synthetic lubricants and usage in industrial metalworking fluid.
    Chang TS; Yunus R; Rashid U; Choong TS; Awang Biak DR; Syam AM
    J Oleo Sci; 2015; 64(2):143-51. PubMed ID: 25748374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viscous Flow Behaviour of Karanja Oil Based Bio-lubricant Base Oil.
    Sharma UC; Sachan S; Trivedi RK
    J Oleo Sci; 2018 Jan; 67(1):105-111. PubMed ID: 29238027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilized lipase-catalyzed transesterification for synthesis of biolubricant from palm oil methyl ester and trimethylolpropane.
    Wafti NSA; Yunus R; Lau HLN; Yaw TCS; Aziz SA
    Bioprocess Biosyst Eng; 2021 Nov; 44(11):2429-2444. PubMed ID: 34269888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel acyloxy derivatives of branched mono- and polyol esters of sal fat: multiviscosity grade lubricant base stocks.
    Kamalakar K; Sai Manoj GN; Prasad RB; Karuna MS
    J Agric Food Chem; 2014 Dec; 62(49):11980-7. PubMed ID: 25416127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmentally friendly processes from coffee wastes to trimethylolpropane esters to be considered biolubricants.
    Unugul T; Kutluk T; Gürkaya Kutluk B; Kapucu N
    J Air Waste Manag Assoc; 2020 Nov; 70(11):1198-1215. PubMed ID: 32644908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Methodology for the Synthesis of Acyloxy Castor Polyol Esters: Low Pour Point Lubricant Base Stocks.
    Kamalakar K; Mahesh G; Prasad RB; Karuna MS
    J Oleo Sci; 2015; 64(12):1283-95. PubMed ID: 26582154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Palm-Based Neopentyl Glycol Diester: A Potential Green Insulating Oil.
    Raof NA; Yunus R; Rashid U; Azis N; Yaakub Z
    Protein Pept Lett; 2018; 25(2):171-179. PubMed ID: 29359647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and evaluation of novel acyl derivatives from jatropha oil as potential lubricant basestocks.
    Sammaiah A; Padmaja KV; Prasad RB
    J Agric Food Chem; 2014 May; 62(20):4652-60. PubMed ID: 24798988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transesterification reaction for synthesis of palm-based ethylhexyl ester and formulation as base oil for synthetic drilling fluid.
    Abdul Habib NS; Yunus R; Rashid U; Taufiq-Yap YH; Abidin ZZ; Syam AM; Irawan S
    J Oleo Sci; 2014; 63(5):497-506. PubMed ID: 24717547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Moringa oleifera oil: a possible source of biodiesel.
    Rashid U; Anwar F; Moser BR; Knothe G
    Bioresour Technol; 2008 Nov; 99(17):8175-9. PubMed ID: 18474424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of physicochemical characteristics of monoepoxide linoleic acid ring opening for biolubricant base oil.
    Salimon J; Salih N; Abdullah BM
    J Biomed Biotechnol; 2011; 2011():196565. PubMed ID: 22131799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of alkyl esters from Camelina sativa oil as biodiesel and as blend components in ultra low-sulfur diesel fuel.
    Moser BR; Vaughn SF
    Bioresour Technol; 2010 Jan; 101(2):646-53. PubMed ID: 19740653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lubricant base stock potential of chemically modified vegetable oils.
    Erhan SZ; Sharma BK; Liu Z; Adhvaryu A
    J Agric Food Chem; 2008 Oct; 56(19):8919-25. PubMed ID: 18783238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microwave-assisted synthesis of trimethylolpropane triester (bio-lubricant) from camelina oil.
    Rokni K; Mostafaei M; Dehghani-Soufi M; Kahrizi D
    Sci Rep; 2022 Jul; 12(1):11941. PubMed ID: 35831357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The conversion of linoleic acid into hydroxytetrahydrofuran-structured bio-lubricant.
    Xu J; Kong L; Deng L; Mazza G; Wang F; Baeyens J; Nie K
    J Environ Manage; 2021 Aug; 291():112692. PubMed ID: 33962288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the fatty acid composition of saponified vegetable oils using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
    Ayorinde FO; Garvin K; Saeed K
    Rapid Commun Mass Spectrom; 2000; 14(7):608-15. PubMed ID: 10775096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of trimethylolpropane esters of oleic acid by Lipoprime 50T.
    Kiriliauskaitė V; Bendikienė V; Juodka B
    J Ind Microbiol Biotechnol; 2011 Sep; 38(9):1561-6. PubMed ID: 21327448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipase-catalysed production of biodiesel fuel from some Nigerian lauric oils.
    Abigor RD; Uadia PO; Foglia TA; Haas MJ; Jones KC; Okpefa E; Obibuzor JU; Bafor ME
    Biochem Soc Trans; 2000 Dec; 28(6):979-81. PubMed ID: 11171279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bio-lubricants derived from waste cooking oil with improved oxidation stability and low-temperature properties.
    Li W; Wang X
    J Oleo Sci; 2015; 64(4):367-74. PubMed ID: 25766933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frying stability of high oleic sunflower oils as affected by composition of tocopherol isomers and linoleic acid content.
    Aladedunye F; Przybylski R
    Food Chem; 2013 Dec; 141(3):2373-8. PubMed ID: 23870970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.