These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 2574840)
61. Presynaptic inhibition of synaptic transmission in the rat hippocampus by activation of muscarinic receptors: involvement of presynaptic calcium influx. Qian J; Saggau P Br J Pharmacol; 1997 Oct; 122(3):511-9. PubMed ID: 9351508 [TBL] [Abstract][Full Text] [Related]
62. Experimental diabetes enhances Ca2+ mobilization and glutamate exocytosis in cerebral synaptosomes from mice. Satoh E; Takahashi A Diabetes Res Clin Pract; 2008 Aug; 81(2):e14-7. PubMed ID: 18508149 [TBL] [Abstract][Full Text] [Related]
64. Glutamate is the endogenous amino acid selectively released by rat hippocampal mossy fiber synaptosomes concomitantly with prodynorphin-derived peptides. Terrian DM; Gannon RL; Rea MA Neurochem Res; 1990 Jan; 15(1):1-5. PubMed ID: 1970130 [TBL] [Abstract][Full Text] [Related]
65. Unexpected inhibitory regulation of glutamate release from rat cerebrocortical nerve terminals by presynaptic 5-hydroxytryptamine-2A receptors. Wang SJ; Wang KY; Wang WC; Sihra TS J Neurosci Res; 2006 Nov; 84(7):1528-42. PubMed ID: 17016851 [TBL] [Abstract][Full Text] [Related]
66. Calcium channels involved in K+- and veratridine-induced increase of cytosolic calcium concentration in human cerebral cortical synaptosomes. Meder W; Fink K; Zentner J; Göthert M J Pharmacol Exp Ther; 1999 Sep; 290(3):1126-31. PubMed ID: 10454486 [TBL] [Abstract][Full Text] [Related]
67. Passive transfer of Lambert-Eaton myasthenic syndrome induces dihydropyridine sensitivity of ICa in mouse motor nerve terminals. Xu YF; Hewett SJ; Atchison WD J Neurophysiol; 1998 Sep; 80(3):1056-69. PubMed ID: 9744921 [TBL] [Abstract][Full Text] [Related]
68. Relation of [Ca2+]i to dopamine release in striatal synaptosomes: role of Ca2+ channels. Carvalho CM; Ferreira IL; Duarte CB; Malva JO; Tretter L; Adam-Vizi V; Carvalho AP Brain Res; 1995 Jan; 669(2):234-44. PubMed ID: 7712179 [TBL] [Abstract][Full Text] [Related]
69. Role of ion channels and intraterminal calcium homeostasis in the action of deltamethrin at presynaptic nerve terminals. Clark JM; Brooks MW Biochem Pharmacol; 1989 Jul; 38(14):2233-45. PubMed ID: 2546560 [TBL] [Abstract][Full Text] [Related]
70. Activation of neuropeptide Y Y1 receptors inhibits glutamate release through reduction of voltage-dependent Ca2+ entry in the rat cerebral cortex nerve terminals: suppression of this inhibitory effect by the protein kinase C-dependent facilitatory pathway. Wang SJ Neuroscience; 2005; 134(3):987-1000. PubMed ID: 16026936 [TBL] [Abstract][Full Text] [Related]
71. Differential inhibition of neuronal calcium entry and [3H]-D-aspartate release by the quaternary derivatives of verapamil and emopamil. Keith RA; Mangano TJ; DeFeo PA; Ernst GE; Warawa EJ Br J Pharmacol; 1994 Oct; 113(2):379-84. PubMed ID: 7834187 [TBL] [Abstract][Full Text] [Related]
72. Inhibitory effect of glutamate release from rat cerebrocortical synaptosomes by dextromethorphan and its metabolite 3-hydroxymorphinan. Lin TY; Lu CW; Wang SJ Neurochem Int; 2009 Jul; 54(8):526-34. PubMed ID: 19428798 [TBL] [Abstract][Full Text] [Related]
73. Effects of calcium antagonists on serotonin-dependent aggregation and serotonin transport in platelets of patients with migraine. Pukhal'skaya TG; Kolosova OA; Men'shikov MY; Vein AM Bull Exp Biol Med; 2000 Jul; 130(7):633-5. PubMed ID: 11140571 [TBL] [Abstract][Full Text] [Related]
74. Effects of calcium antagonists on the dopamine system. Mena MA; Garcia de Yébenes MJ; Tabernero C; Casarejos MJ; Pardo B; Garcia de Yébenes J Clin Neuropharmacol; 1995 Oct; 18(5):410-26. PubMed ID: 8665555 [TBL] [Abstract][Full Text] [Related]
75. L-type calcium channels mediate dynorphin neuropeptide release from dendrites but not axons of hippocampal granule cells. Simmons ML; Terman GW; Gibbs SM; Chavkin C Neuron; 1995 Jun; 14(6):1265-72. PubMed ID: 7605635 [TBL] [Abstract][Full Text] [Related]
76. Comparison of the calcium entry and calcium overload blocking properties of R71811 and flunarizine. Matsui Y; Yamagami I; Hirai K Naunyn Schmiedebergs Arch Pharmacol; 1990 Sep; 342(3):264-70. PubMed ID: 2126346 [TBL] [Abstract][Full Text] [Related]
77. Gastric histamine content and ulcer formation in rats with ethanol-induced injury. Effects of cinnarizine and flunarizine. Lozeva V; Marazova K; Belcheva A Agents Actions; 1994 Jun; 41 Spec No():C91-2. PubMed ID: 7976817 [TBL] [Abstract][Full Text] [Related]
78. Evidence for dynorphin-A as a neurotransmitter in rat hippocampus. Chavkin C; Bakhit C; Bloom FE Life Sci; 1983; 33 Suppl 1():13-6. PubMed ID: 6141483 [TBL] [Abstract][Full Text] [Related]
79. Effect of flunarizine and calcium on serotonin uptake in human and rat blood platelets and rat synaptosomes. Jensen PN; Smith DF; Poulsen JH; Møller HJ; Rosenberg R Biol Psychiatry; 1994 Jul; 36(2):118-23. PubMed ID: 7948444 [TBL] [Abstract][Full Text] [Related]
80. The long-term treatment with the Ca(2+)-antagonists nifedipine, verapamil, flunarizine and with the calmodulin antagonist trifluoperazine decreases the activity of 5-HT1 receptors in rat cerebral cortex and hippocampus. Popova J; Staneva-Stoytcheva D; Ivanova E; Tosheva T Gen Pharmacol; 1991; 22(6):1147-9. PubMed ID: 1810811 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]