These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 25748534)

  • 21. A max-margin training of RNA secondary structure prediction integrated with the thermodynamic model.
    Akiyama M; Sato K; Sakakibara Y
    J Bioinform Comput Biol; 2018 Dec; 16(6):1840025. PubMed ID: 30616476
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rich parameterization improves RNA structure prediction.
    Zakov S; Goldberg Y; Elhadad M; Ziv-Ukelson M
    J Comput Biol; 2011 Nov; 18(11):1525-42. PubMed ID: 22035327
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A semi-supervised deep learning method based on stacked sparse auto-encoder for cancer prediction using RNA-seq data.
    Xiao Y; Wu J; Lin Z; Zhao X
    Comput Methods Programs Biomed; 2018 Nov; 166():99-105. PubMed ID: 30415723
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluating the effect of disturbed ensemble distributions on SCFG based statistical sampling of RNA secondary structures.
    Scheid A; Nebel ME
    BMC Bioinformatics; 2012 Jul; 13():159. PubMed ID: 22776037
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ab initio RNA folding.
    Cragnolini T; Derreumaux P; Pasquali S
    J Phys Condens Matter; 2015 Jun; 27(23):233102. PubMed ID: 25993396
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A sensitivity analysis of RNA folding nearest neighbor parameters identifies a subset of free energy parameters with the greatest impact on RNA secondary structure prediction.
    Zuber J; Sun H; Zhang X; McFadyen I; Mathews DH
    Nucleic Acids Res; 2017 Jun; 45(10):6168-6176. PubMed ID: 28334976
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multithreaded comparative RNA secondary structure prediction using stochastic context-free grammars.
    Sükösd Z; Knudsen B; Vaerum M; Kjems J; Andersen ES
    BMC Bioinformatics; 2011 Apr; 12():103. PubMed ID: 21501497
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel and efficient RNA secondary structure prediction using hierarchical folding.
    Jabbari H; Condon A; Zhao S
    J Comput Biol; 2008 Mar; 15(2):139-63. PubMed ID: 18312147
    [TBL] [Abstract][Full Text] [Related]  

  • 29. RNA pseudoknot prediction in energy-based models.
    Lyngsø RB; Pedersen CN
    J Comput Biol; 2000; 7(3-4):409-27. PubMed ID: 11108471
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A semi-supervised machine learning framework for microRNA classification.
    Sheikh Hassani M; Green JR
    Hum Genomics; 2019 Oct; 13(Suppl 1):43. PubMed ID: 31639051
    [TBL] [Abstract][Full Text] [Related]  

  • 31. reactIDR: evaluation of the statistical reproducibility of high-throughput structural analyses towards a robust RNA structure prediction.
    Kawaguchi R; Kiryu H; Iwakiri J; Sese J
    BMC Bioinformatics; 2019 Mar; 20(Suppl 3):130. PubMed ID: 30925857
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accuracy of latent-variable estimation in Bayesian semi-supervised learning.
    Yamazaki K
    Neural Netw; 2015 Sep; 69():1-10. PubMed ID: 26005790
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Semi-supervised learning of Hidden Markov Models for biological sequence analysis.
    Tamposis IA; Tsirigos KD; Theodoropoulou MC; Kontou PI; Bagos PG
    Bioinformatics; 2019 Jul; 35(13):2208-2215. PubMed ID: 30445435
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Semisupervised learning for a hybrid generative/discriminative classifier based on the maximum entropy principle.
    Fujino A; Ueda N; Saito K
    IEEE Trans Pattern Anal Mach Intell; 2008 Mar; 30(3):424-37. PubMed ID: 18195437
    [TBL] [Abstract][Full Text] [Related]  

  • 35. FlexStem: improving predictions of RNA secondary structures with pseudoknots by reducing the search space.
    Chen X; He SM; Bu D; Zhang F; Wang Z; Chen R; Gao W
    Bioinformatics; 2008 Sep; 24(18):1994-2001. PubMed ID: 18586700
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extracting stacking interaction parameters for RNA from the data set of native structures.
    Dima RI; Hyeon C; Thirumalai D
    J Mol Biol; 2005 Mar; 347(1):53-69. PubMed ID: 15733917
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multithreaded parsing for predicting RNA secondary structures.
    Al-Mulhem MS
    Int J Bioinform Res Appl; 2010; 6(6):609-21. PubMed ID: 21354966
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MultiCon: A Semi-Supervised Approach for Predicting Drug Function from Chemical Structure Analysis.
    Sahoo P; Roy I; Wang Z; Mi F; Yu L; Balasubramani P; Khan L; Stoddart JF
    J Chem Inf Model; 2020 Dec; 60(12):5995-6006. PubMed ID: 33140954
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A general edit distance between RNA structures.
    Jiang T; Lin G; Ma B; Zhang K
    J Comput Biol; 2002; 9(2):371-88. PubMed ID: 12015887
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The four ingredients of single-sequence RNA secondary structure prediction. A unifying perspective.
    Rivas E
    RNA Biol; 2013 Jul; 10(7):1185-96. PubMed ID: 23695796
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.