These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 25748636)
1. Measurement of off-diagonal transport coefficients in two-phase flow in porous media. Ramakrishnan TS; Goode PA J Colloid Interface Sci; 2015 Jul; 449():392-8. PubMed ID: 25748636 [TBL] [Abstract][Full Text] [Related]
2. Numerical simulations of high viscosity DNAPL recovery in highly permeable porous media under isothermal and non-isothermal conditions. Davarzani H; Philippe N; Cochennec M; Colombano S; Dierick M; Ataie-Ashtiani B; Klein PY; Marcoux M J Contam Hydrol; 2022 Dec; 251():104073. PubMed ID: 36137463 [TBL] [Abstract][Full Text] [Related]
3. Pore-scale investigation of viscous coupling effects for two-phase flow in porous media. Li H; Pan C; Miller CT Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026705. PubMed ID: 16196749 [TBL] [Abstract][Full Text] [Related]
5. Origin of the inertial deviation from Darcy's law: An investigation from a microscopic flow analysis on two-dimensional model structures. Agnaou M; Lasseux D; Ahmadi A Phys Rev E; 2017 Oct; 96(4-1):043105. PubMed ID: 29347623 [TBL] [Abstract][Full Text] [Related]
6. Three-dimensional hydrodynamic lattice-gas simulations of binary immiscible and ternary amphiphilic flow through porous media. Love PJ; Maillet JB; Coveney PV Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 1):061302. PubMed ID: 11736175 [TBL] [Abstract][Full Text] [Related]
7. Two-phase flow in a chemically active porous medium. Darmon A; Benzaquen M; Salez T; Dauchot O J Chem Phys; 2014 Dec; 141(24):244704. PubMed ID: 25554172 [TBL] [Abstract][Full Text] [Related]
8. Pore-scale visualization and characterization of viscous dissipation in porous media. Roman S; Soulaine C; Kovscek AR J Colloid Interface Sci; 2020 Jan; 558():269-279. PubMed ID: 31593860 [TBL] [Abstract][Full Text] [Related]
9. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
10. Macroscopic momentum and mechanical energy equations for incompressible single-phase flow in porous media. Paéz-García CT; Valdés-Parada FJ; Lasseux D Phys Rev E; 2017 Feb; 95(2-1):023101. PubMed ID: 28297957 [TBL] [Abstract][Full Text] [Related]
11. Dynamics and stability of two-potential flows in the porous media. Markicevic B; Bijeljic B; Navaz HK Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056324. PubMed ID: 22181515 [TBL] [Abstract][Full Text] [Related]
12. Generalization of Darcy's law for Bingham fluids in porous media: from flow-field statistics to the flow-rate regimes. Chevalier T; Talon L Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023011. PubMed ID: 25768601 [TBL] [Abstract][Full Text] [Related]
13. A semi-experimental procedure for the estimation of permeability of microfluidic pore network. Pradhan S; Shaik I; Lagraauw R; Bikkina P MethodsX; 2019; 6():704-713. PubMed ID: 31249792 [TBL] [Abstract][Full Text] [Related]
14. A two-phase flow model simulating water penetration into pharmaceutical tablets. Salish K; Thool P; Qin Y; Yawman PD; Zhang S; Mao C Int J Pharm; 2024 Jul; 660():124383. PubMed ID: 38925240 [TBL] [Abstract][Full Text] [Related]
15. Renormalization group theory outperforms other approaches in statistical comparison between upscaling techniques for porous media. Hanasoge S; Agarwal U; Tandon K; Koelman JMVA Phys Rev E; 2017 Sep; 96(3-1):033313. PubMed ID: 29347055 [TBL] [Abstract][Full Text] [Related]
16. History effects on nonwetting fluid residuals during desaturation flow through disordered porous media. Chevalier T; Salin D; Talon L; Yiotis AG Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):043015. PubMed ID: 25974588 [TBL] [Abstract][Full Text] [Related]
18. The permeability of pillar arrays in microfluidic devices: an application of Brinkman's theory towards wall friction. Hulikal Chakrapani T; Bazyar H; Lammertink RGH; Luding S; den Otter WK Soft Matter; 2023 Jan; 19(3):436-450. PubMed ID: 36511444 [TBL] [Abstract][Full Text] [Related]
19. A parallel second-order adaptive mesh algorithm for incompressible flow in porous media. Pau GS; Almgren AS; Bell JB; Lijewski MJ Philos Trans A Math Phys Eng Sci; 2009 Nov; 367(1907):4633-54. PubMed ID: 19840985 [TBL] [Abstract][Full Text] [Related]
20. A unified nomenclature for quantification and description of water conducting properties of sapwood xylem based on Darcy's law. Reid DE; Silins U; Mendoza C; Lieffers VJ Tree Physiol; 2005 Aug; 25(8):993-1000. PubMed ID: 15929930 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]