BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

449 related articles for article (PubMed ID: 25748842)

  • 61. Preparation of cellulosic Ag-nanocomposites using an ionic liquid.
    Tayyab Z; Safi SZ; Rahim A; Khan AS; Sharif F; Khan ZUH; Rehman F; Ullah Z; Iqbal J; Muhammad N
    J Biomater Sci Polym Ed; 2019; 30(9):785-796. PubMed ID: 31018777
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The in situ synthesis of silver nanoclusters inside a bacterial cellulose hydrogel for antibacterial applications.
    Liu Y; Wang S; Wang Z; Yao Q; Fang S; Zhou X; Yuan X; Xie J
    J Mater Chem B; 2020 Jun; 8(22):4846-4850. PubMed ID: 32186318
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Biodegradable sodium alginate-based semi-interpenetrating polymer network hydrogels for antibacterial application.
    Rao KM; Rao KS; Ramanjaneyulu G; Rao KC; Subha MC; Ha CS
    J Biomed Mater Res A; 2014 Sep; 102(9):3196-206. PubMed ID: 24151188
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Preclinical functional characterization methods of nanocomposite hydrogels containing silver nanoparticles for biomedical applications.
    Stojkovska J; Zvicer J; Obradovic B
    Appl Microbiol Biotechnol; 2020 Jun; 104(11):4643-4658. PubMed ID: 32253473
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Synthesis of Ag-NPs impregnated cellulose composite material: its possible role in wound healing and photocatalysis.
    Ali A; Haq IU; Akhtar J; Sher M; Ahmed N; Zia M
    IET Nanobiotechnol; 2017 Jun; 11(4):477-484. PubMed ID: 28530199
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Bacterial cellulose matrix with in situ impregnation of silver nanoparticles via catecholic redox chemistry for third degree burn wound healing.
    Jiji S; Udhayakumar S; Maharajan K; Rose C; Muralidharan C; Kadirvelu K
    Carbohydr Polym; 2020 Oct; 245():116573. PubMed ID: 32718650
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Preparation of surfactant-mediated silver and copper nanoparticles dispersed in hierarchical carbon micro-nanofibers for antibacterial applications.
    Singh S; Ashfaq M; Singh RK; Joshi HC; Srivastava A; Sharma A; Verma N
    N Biotechnol; 2013 Sep; 30(6):656-65. PubMed ID: 23692978
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Functionalized bacterial cellulose derivatives and nanocomposites.
    Hu W; Chen S; Yang J; Li Z; Wang H
    Carbohydr Polym; 2014 Jan; 101():1043-60. PubMed ID: 24299873
    [TBL] [Abstract][Full Text] [Related]  

  • 69. TEMPO-Oxidized Bacterial Cellulose Pellicle with Silver Nanoparticles for Wound Dressing.
    Wu CN; Fuh SC; Lin SP; Lin YY; Chen HY; Liu JM; Cheng KC
    Biomacromolecules; 2018 Feb; 19(2):544-554. PubMed ID: 29334612
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Development of modified montmorillonite-bacterial cellulose nanocomposites as a novel substitute for burn skin and tissue regeneration.
    Sajjad W; Khan T; Ul-Islam M; Khan R; Hussain Z; Khalid A; Wahid F
    Carbohydr Polym; 2019 Feb; 206():548-556. PubMed ID: 30553356
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Synthesis and characterization of iron oxide/cellulose nanocomposite film.
    Yadav M; Mun S; Hyun J; Kim J
    Int J Biol Macromol; 2015 Mar; 74():142-9. PubMed ID: 25530000
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Impregnation of the bacterial cellulose membrane with biologically produced silver nanoparticles.
    Pourali P; Yahyaei B; Ajoudanifar H; Taheri R; Alavi H; Hoseini A
    Curr Microbiol; 2014 Dec; 69(6):785-93. PubMed ID: 25023639
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Ag@AgI, core@shell structure in agarose matrix as hybrid: synthesis, characterization, and antimicrobial activity.
    Ghosh S; Saraswathi A; Indi SS; Hoti SL; Vasan HN
    Langmuir; 2012 Jun; 28(22):8550-61. PubMed ID: 22582868
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A Novel AgNPs/Sericin/Agar Film with Enhanced Mechanical Property and Antibacterial Capability.
    Wang Y; Cai R; Tao G; Wang P; Zuo H; Zhao P; Umar A; He H
    Molecules; 2018 Jul; 23(7):. PubMed ID: 30041405
    [TBL] [Abstract][Full Text] [Related]  

  • 75. One pot synthesis of polypyrrole silver nanocomposite on cotton fabrics for multifunctional property.
    Firoz Babu K; Dhandapani P; Maruthamuthu S; Anbu Kulandainathan M
    Carbohydr Polym; 2012 Nov; 90(4):1557-63. PubMed ID: 22944416
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Fabrication and characterization of electrospun zein/Ag nanocomposite mats for wound dressing applications.
    Dashdorj U; Reyes MK; Unnithan AR; Tiwari AP; Tumurbaatar B; Park CH; Kim CS
    Int J Biol Macromol; 2015 Sep; 80():1-7. PubMed ID: 26093320
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Green in-situ synthesized silver nanoparticles embedded in bacterial cellulose nanopaper as a bionanocomposite plasmonic sensor.
    Pourreza N; Golmohammadi H; Naghdi T; Yousefi H
    Biosens Bioelectron; 2015 Dec; 74():353-9. PubMed ID: 26159156
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Preparation of ZnO/Ag nanocomposite and coating on polymers for anti-infection biomaterial application.
    Sadeghi B
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():787-92. PubMed ID: 24148529
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Preparation and antibacterial activities of polyaniline/Cu0.05Zn0.95O nanocomposites.
    Liang X; Sun M; Li L; Qiao R; Chen K; Xiao Q; Xu F
    Dalton Trans; 2012 Mar; 41(9):2804-11. PubMed ID: 22249414
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Release of silver and copper nanoparticles from polyethylene nanocomposites and their penetration into Listeria monocytogenes.
    Tamayo LA; Zapata PA; Vejar ND; Azócar MI; Gulppi MA; Zhou X; Thompson GE; Rabagliati FM; Páez MA
    Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():24-31. PubMed ID: 24857461
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.