These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 25748853)

  • 1. Alternative nanostructures for thermophones.
    Aliev AE; Mayo NK; Jung de Andrade M; Robles RO; Fang S; Baughman RH; Zhang M; Chen Y; Lee JA; Kim SJ
    ACS Nano; 2015 May; 9(5):4743-56. PubMed ID: 25748853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbonized Electrospun Nanofiber Sheets for Thermophones.
    Aliev AE; Perananthan S; Ferraris JP
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31192-31201. PubMed ID: 27776207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal management of thermoacoustic sound projectors using a free-standing carbon nanotube aerogel sheet as a heat source.
    Aliev AE; Mayo NK; Baughman RH; Avirovik D; Priya S; Zarnetske MR; Blottman JB
    Nanotechnology; 2014 Oct; 25(40):405704. PubMed ID: 25213658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermoacoustic sound projector: exceeding the fundamental efficiency of carbon nanotubes.
    Aliev AE; Codoluto D; Baughman RH; Ovalle-Robles R; Inoue K; Romanov SA; Nasibulin AG; Kumar P; Priya S; Mayo NK; Blottman JB
    Nanotechnology; 2018 Aug; 29(32):325704. PubMed ID: 29763412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increasing the efficiency of thermoacoustic carbon nanotube sound projectors.
    Aliev AE; Gartstein YN; Baughman RH
    Nanotechnology; 2013 Jun; 24(23):235501. PubMed ID: 23669056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Transient Thermoacoustic Characteristics and Performance in Carbon Nanotube Sponge Underwater Transducers.
    Qi Q; Li Z; Yin H; Feng Y; Zhou Z; Rong D
    Nanomaterials (Basel); 2024 May; 14(10):. PubMed ID: 38786774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermoacoustic power conversion using a piezoelectric transducer.
    Jensen C; Raspet R
    J Acoust Soc Am; 2010 Jul; 128(1):98-103. PubMed ID: 20649205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Underwater sound generation using carbon nanotube projectors.
    Aliev AE; Lima MD; Fang S; Baughman RH
    Nano Lett; 2010 Jul; 10(7):2374-80. PubMed ID: 20507157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mirage effect from thermally modulated transparent carbon nanotube sheets.
    Aliev AE; Gartstein YN; Baughman RH
    Nanotechnology; 2011 Oct; 22(43):435704. PubMed ID: 21967888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrathin thermoacoustic nanobridge loudspeakers from ALD on polyimide.
    Brown JJ; Moore NC; Supekar OD; Gertsch JC; Bright VM
    Nanotechnology; 2016 Nov; 27(47):475504. PubMed ID: 27779111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feasibility of a high-powered carbon nanotube thin-film loudspeaker.
    Barnard AR; Jenkins DM; Brungart TA; McDevitt TM; Kline BL
    J Acoust Soc Am; 2013 Sep; 134(3):EL276-81. PubMed ID: 23968060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and Characterization of a Thermophone Based on Laser-Scribed Graphene Intercalated with Multiwalled Carbon Nanotubes.
    Rabbani M; Syed AW; Khalid S; Mohammad MA
    Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene-on-paper sound source devices.
    Tian H; Ren TL; Xie D; Wang YF; Zhou CJ; Feng TT; Fu D; Yang Y; Peng PG; Wang LG; Liu LT
    ACS Nano; 2011 Jun; 5(6):4878-85. PubMed ID: 21591811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental quantification of the true efficiency of carbon nanotube thin-film thermophones.
    Bouman TM; Barnard AR; Asgarisabet M
    J Acoust Soc Am; 2016 Mar; 139(3):1353-63. PubMed ID: 27036272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermoacoustic transduction in individual suspended carbon nanotubes.
    Mason BJ; Chang SW; Chen J; Cronin SB; Bushmaker AW
    ACS Nano; 2015 May; 9(5):5372-6. PubMed ID: 25961803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible, stretchable, transparent carbon nanotube thin film loudspeakers.
    Xiao L; Chen Z; Feng C; Liu L; Bai ZQ; Wang Y; Qian L; Zhang Y; Li Q; Jiang K; Fan S
    Nano Lett; 2008 Dec; 8(12):4539-45. PubMed ID: 19367976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review on the conversion of thermoacoustic power into electricity.
    Timmer MAG; de Blok K; van der Meer TH
    J Acoust Soc Am; 2018 Feb; 143(2):841. PubMed ID: 29495704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Large-Scale and Low-Cost Thermoacoustic Loudspeaker Based on Three-Dimensional Graphene Foam.
    Hou W; Wei Y; Wang Y; Duan S; Guo Z; Tian H; Yang Y; Ren TL
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38683903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Underwater Thermoacoustic Generation by a Hierarchical Tetrapodal Carbon Nanotube Network.
    Liu N; Saure LM; Sriramdas R; Schütt F; Wang K; Nozariasbmarz A; Zhang Y; Adelung R; Baughman RH; Priya S; Li W; Poudel B
    ACS Nano; 2024 Mar; 18(12):8988-8995. PubMed ID: 38478913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.