These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 25749035)
1. Glutamate and asparagine cataplerosis underlie glutamine addiction in melanoma. Ratnikov B; Aza-Blanc P; Ronai ZA; Smith JW; Osterman AL; Scott DA Oncotarget; 2015 Apr; 6(10):7379-89. PubMed ID: 25749035 [TBL] [Abstract][Full Text] [Related]
2. A Critical Role of Glutamine and Asparagine γ-Nitrogen in Nucleotide Biosynthesis in Cancer Cells Hijacked by an Oncogenic Virus. Zhu Y; Li T; Ramos da Silva S; Lee JJ; Lu C; Eoh H; Jung JU; Gao SJ mBio; 2017 Aug; 8(4):. PubMed ID: 28811348 [TBL] [Abstract][Full Text] [Related]
3. ω-Amidase: an underappreciated, but important enzyme in L-glutamine and L-asparagine metabolism; relevance to sulfur and nitrogen metabolism, tumor biology and hyperammonemic diseases. Cooper AJ; Shurubor YI; Dorai T; Pinto JT; Isakova EP; Deryabina YI; Denton TT; Krasnikov BF Amino Acids; 2016 Jan; 48(1):1-20. PubMed ID: 26259930 [TBL] [Abstract][Full Text] [Related]
4. Glutamate: Where does it come from and where does it go? Olsen GM; Sonnewald U Neurochem Int; 2015 Sep; 88():47-52. PubMed ID: 25447768 [TBL] [Abstract][Full Text] [Related]
5. Elongating porcine conceptuses can utilize glutaminolysis as an anaplerotic pathway to maintain the TCA cycle†. Seo H; Kramer AC; McLendon BA; Cain JW; Burghardt RC; Wu G; Bazer FW; Johnson GA Biol Reprod; 2022 Sep; 107(3):823-833. PubMed ID: 35552608 [TBL] [Abstract][Full Text] [Related]
6. Metabolic fingerprinting reveals extensive consequences of GLS hyperactivity. Rumping L; Pras-Raves ML; Gerrits J; Tang YF; Willemsen MA; Houwen RHJ; van Haaften G; van Hasselt PM; Verhoeven-Duif NM; Jans JJM Biochim Biophys Acta Gen Subj; 2020 Mar; 1864(3):129484. PubMed ID: 31734463 [TBL] [Abstract][Full Text] [Related]
8. Glutamine and asparagine as nitrogen donors for reductant-dependent glutamate synthesis in pea roots. Miflin BJ; Lea PJ Biochem J; 1975 Aug; 149(2):403-9. PubMed ID: 170914 [TBL] [Abstract][Full Text] [Related]
9. Stable isotope studies reveal pathways for the incorporation of non-essential amino acids in Acyrthosiphon pisum (pea aphids). Haribal M; Jander G J Exp Biol; 2015 Dec; 218(Pt 23):3797-806. PubMed ID: 26632455 [TBL] [Abstract][Full Text] [Related]
10. Glutamate is preferred over glutamine for intermediary metabolism in cultured cerebellar neurons. Olstad E; Qu H; Sonnewald U J Cereb Blood Flow Metab; 2007 Apr; 27(4):811-20. PubMed ID: 17033695 [TBL] [Abstract][Full Text] [Related]
11. Critical role of glutamine metabolism in cardiomyocytes under oxidative stress. Watanabe K; Nagao M; Toh R; Irino Y; Shinohara M; Iino T; Yoshikawa S; Tanaka H; Satomi-Kobayashi S; Ishida T; Hirata KI Biochem Biophys Res Commun; 2021 Jan; 534():687-693. PubMed ID: 33213841 [TBL] [Abstract][Full Text] [Related]
12. Role of glutamine and neuronal glutamate uptake in glutamate homeostasis and synthesis during vesicular release in cultured glutamatergic neurons. Waagepetersen HS; Qu H; Sonnewald U; Shimamoto K; Schousboe A Neurochem Int; 2005 Jul; 47(1-2):92-102. PubMed ID: 15921825 [TBL] [Abstract][Full Text] [Related]
13. Metabolic profiles of cysteine, methionine, glutamate, glutamine, arginine, aspartate, asparagine, alanine and glutathione in Streptococcus thermophilus during pH-controlled batch fermentations. Qiao Y; Liu G; Leng C; Zhang Y; Lv X; Chen H; Sun J; Feng Z Sci Rep; 2018 Aug; 8(1):12441. PubMed ID: 30127376 [TBL] [Abstract][Full Text] [Related]
14. 13C isotope-assisted methods for quantifying glutamine metabolism in cancer cells. Zhang J; Ahn WS; Gameiro PA; Keibler MA; Zhang Z; Stephanopoulos G Methods Enzymol; 2014; 542():369-89. PubMed ID: 24862276 [TBL] [Abstract][Full Text] [Related]
15. Nitrogen metabolism of asparagine and glutamate in Vero cells studied by (1)H/ (15)N NMR spectroscopy. Huang H; Yu Y; Yi X; Zhang Y Appl Microbiol Biotechnol; 2007 Nov; 77(2):427-36. PubMed ID: 17952433 [TBL] [Abstract][Full Text] [Related]
16. Nonenzymatic deamidation of asparaginyl and glutaminyl residues in proteins. Wright HT Crit Rev Biochem Mol Biol; 1991; 26(1):1-52. PubMed ID: 1678690 [TBL] [Abstract][Full Text] [Related]
17. Synthetic lethality of glutaminolysis inhibition, autophagy inactivation and asparagine depletion in colon cancer. Li J; Song P; Zhu L; Aziz N; Zhou Q; Zhang Y; Xu W; Feng L; Chen D; Wang X; Jin H Oncotarget; 2017 Jun; 8(26):42664-42672. PubMed ID: 28424408 [TBL] [Abstract][Full Text] [Related]
18. Glutamine: an anaplerotic precursor. Bowtell JL; Bruce M Nutrition; 2002 Mar; 18(3):222-4. PubMed ID: 11882393 [TBL] [Abstract][Full Text] [Related]
19. Glutamate synthesis has to be matched by its degradation - where do all the carbons go? Sonnewald U J Neurochem; 2014 Nov; 131(4):399-406. PubMed ID: 24989463 [TBL] [Abstract][Full Text] [Related]
20. Long-term kainic acid exposure reveals compartmentation of glutamate and glutamine metabolism in cultured cerebellar neurons. Olstad E; Qu H; Sonnewald U Neurochem Int; 2007 Jun; 50(7-8):1004-13. PubMed ID: 17196710 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]