BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 25749126)

  • 1. Nanoscale copper in the soil-plant system - toxicity and underlying potential mechanisms.
    Anjum NA; Adam V; Kizek R; Duarte AC; Pereira E; Iqbal M; Lukatkin AS; Ahmad I
    Environ Res; 2015 Apr; 138():306-25. PubMed ID: 25749126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicity of nano-CuO particles to maize and microbial community largely depends on its bioavailable fractions.
    Pu S; Yan C; Huang H; Liu S; Deng D
    Environ Pollut; 2019 Dec; 255(Pt 2):113248. PubMed ID: 31561034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances on environmental behavior of Cu-based nanomaterials in soil-plant system: A review.
    Gao J; Zhu Y; Zeng L; Liu X; Yang Y; Zhou Y
    J Environ Manage; 2024 Jun; 361():121289. PubMed ID: 38820797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochar reduces copper toxicity in Chenopodium quinoa Willd. In a sandy soil.
    Buss W; Kammann C; Koyro HW
    J Environ Qual; 2012; 41(4):1157-65. PubMed ID: 22751058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importance of exposure dynamics of metal-based nano-ZnO, -Cu and -Pb governing the metabolic potential of soil bacterial communities.
    Zhai Y; Hunting ER; Wouterse M; Peijnenburg WJGM; Vijver MG
    Ecotoxicol Environ Saf; 2017 Nov; 145():349-358. PubMed ID: 28759764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nano-aluminum: transport through sand columns and environmental effects on plants and soil communities.
    Doshi R; Braida W; Christodoulatos C; Wazne M; O'Connor G
    Environ Res; 2008 Mar; 106(3):296-303. PubMed ID: 17537426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper uptake, essentiality, toxicity, detoxification and risk assessment in soil-plant environment.
    Shabbir Z; Sardar A; Shabbir A; Abbas G; Shamshad S; Khalid S; Natasha ; Murtaza G; Dumat C; Shahid M
    Chemosphere; 2020 Nov; 259():127436. PubMed ID: 32599387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exposure of CuO nanoparticles and their metal counterpart leads to change in the gut microbiota and resistome of collembolans.
    Ding J; Liu J; Chang XB; Zhu D; Lassen SB
    Chemosphere; 2020 Nov; 258():127347. PubMed ID: 32535433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxicity of copper nanoparticles and CuCl2 salt to Enchytraeus albidus worms: survival, reproduction and avoidance responses.
    Amorim MJ; Scott-Fordsmand JJ
    Environ Pollut; 2012 May; 164():164-8. PubMed ID: 22361055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copper toxicity to bioluminescent Nitrosomonas europaea in soil is explained by the free metal ion activity in pore water.
    Ore S; Mertens J; Brandt KK; Smolders E
    Environ Sci Technol; 2010 Dec; 44(23):9201-6. PubMed ID: 21047118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uptake, transport, and effects of nano-copper exposure in zucchini (Cucurbita pepo).
    Tamez C; Hernandez-Molina M; Hernandez-Viezcas JA; Gardea-Torresdey JL
    Sci Total Environ; 2019 May; 665():100-106. PubMed ID: 30772537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the transformation, speciation, and hazard potential of copper particles in a model septic tank system using zebrafish to monitor the effluent.
    Lin S; Taylor AA; Ji Z; Chang CH; Kinsinger NM; Ueng W; Walker SL; Nel AE
    ACS Nano; 2015 Feb; 9(2):2038-48. PubMed ID: 25625504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of copper nanoparticles on the development of zebrafish embryos.
    Bai W; Tian W; Zhang Z; He X; Ma Y; Liu N; Chai Z
    J Nanosci Nanotechnol; 2010 Dec; 10(12):8670-6. PubMed ID: 21121381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acute and reproductive toxicity of nano-sized metal oxides (ZnO and TiO₂) to earthworms (Eisenia fetida).
    Cañas JE; Qi B; Li S; Maul JD; Cox SB; Das S; Green MJ
    J Environ Monit; 2011 Dec; 13(12):3351-7. PubMed ID: 22020256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of dissipation mechanisms by Lolium perenne L, and Raphanus sativus for pentachlorophenol (PCP) in copper co-contaminated soil.
    Lin Q; Wang Z; Ma S; Chen Y
    Sci Total Environ; 2006 Sep; 368(2-3):814-22. PubMed ID: 16643990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell membrane damage and protein interaction induced by copper containing nanoparticles--importance of the metal release process.
    Karlsson HL; Cronholm P; Hedberg Y; Tornberg M; De Battice L; Svedhem S; Wallinder IO
    Toxicology; 2013 Nov; 313(1):59-69. PubMed ID: 23891735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants.
    Lin Q; Shen KL; Zhao HM; Li WH
    J Hazard Mater; 2008 Feb; 150(3):515-21. PubMed ID: 17574741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The nanotechnology among US: are metal and metal oxides nanoparticles a nano or mega risk for soil microbial communities?
    Parada J; Rubilar O; Fernández-Baldo MA; Bertolino FA; Durán N; Seabra AB; Tortella GR
    Crit Rev Biotechnol; 2019 Mar; 39(2):157-172. PubMed ID: 30396282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influences of copper forms on the toxicity to microorganisms in soils.
    Kunito T; Saeki K; Oyaizu H; Matsumoto S
    Ecotoxicol Environ Saf; 1999 Oct; 44(2):174-81. PubMed ID: 10571464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Usefulness of the sensitivity-resistance index to estimate the toxicity of copper on bacteria in copper-contaminated soils.
    Kunito T; Senoo K; Saeki K; Oyaizu H; Matsumoto S
    Ecotoxicol Environ Saf; 1999 Oct; 44(2):182-9. PubMed ID: 10571465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.