BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 25749367)

  • 1. Carbon and nitrogen limitation increase chitosan antifungal activity in Neurospora crassa and fungal human pathogens.
    Lopez-Moya F; Colom-Valiente MF; Martinez-Peinado P; Martinez-Lopez JE; Puelles E; Sempere-Ortells JM; Lopez-Llorca LV
    Fungal Biol; 2015 Mar; 119(2-3):154-69. PubMed ID: 25749367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chitosan permeabilizes the plasma membrane and kills cells of Neurospora crassa in an energy dependent manner.
    Palma-Guerrero J; Huang IC; Jansson HB; Salinas J; Lopez-Llorca LV; Read ND
    Fungal Genet Biol; 2009 Aug; 46(8):585-94. PubMed ID: 19389478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurospora crassa transcriptomics reveals oxidative stress and plasma membrane homeostasis biology genes as key targets in response to chitosan.
    Lopez-Moya F; Kowbel D; Nueda MJ; Palma-Guerrero J; Glass NL; Lopez-Llorca LV
    Mol Biosyst; 2016 Feb; 12(2):391-403. PubMed ID: 26694141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell wall composition plays a key role on sensitivity of filamentous fungi to chitosan.
    Aranda-Martinez A; Lopez-Moya F; Lopez-Llorca LV
    J Basic Microbiol; 2016 Oct; 56(10):1059-1070. PubMed ID: 27259000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane fluidity determines sensitivity of filamentous fungi to chitosan.
    Palma-Guerrero J; Lopez-Jimenez JA; Pérez-Berná AJ; Huang IC; Jansson HB; Salinas J; Villalaín J; Read ND; Lopez-Llorca LV
    Mol Microbiol; 2010 Feb; 75(4):1021-32. PubMed ID: 20487294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chitosan silver nanocomposite (CAgNC) as an antifungal agent against Candida albicans.
    Kulatunga D; Dananjaya S; Godahewa GI; Lee J; De Zoysa M
    Med Mycol; 2017 Feb; 55(2):213-222. PubMed ID: 27495320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ebselen exerts antifungal activity by regulating glutathione (GSH) and reactive oxygen species (ROS) production in fungal cells.
    Thangamani S; Eldesouky HE; Mohammad H; Pascuzzi PE; Avramova L; Hazbun TR; Seleem MN
    Biochim Biophys Acta Gen Subj; 2017 Jan; 1861(1 Pt A):3002-3010. PubMed ID: 27712973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antifungal activity of low molecular weight chitosan against clinical isolates of Candida spp.
    Alburquenque C; Bucarey SA; Neira-Carrillo A; Urzúa B; Hermosilla G; Tapia CV
    Med Mycol; 2010 Dec; 48(8):1018-23. PubMed ID: 20482450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clerodane type diterpene as a novel antifungal agent from Polyalthia longifolia var. pendula.
    Bhattacharya AK; Chand HR; John J; Deshpande MV
    Eur J Med Chem; 2015 Apr; 94():1-7. PubMed ID: 25747495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel bi-domain plant defensin MtDef5 with potent broad-spectrum antifungal activity binds to multiple phospholipids and forms oligomers.
    Islam KT; Velivelli SLS; Berg RH; Oakley B; Shah DM
    Sci Rep; 2017 Nov; 7(1):16157. PubMed ID: 29170445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The antibiotic polymyxin B exhibits novel antifungal activity against Fusarium species.
    Hsu LH; Wang HF; Sun PL; Hu FR; Chen YL
    Int J Antimicrob Agents; 2017 Jun; 49(6):740-748. PubMed ID: 28433743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of novel cell-wall active antifungal compounds.
    St George S; Selitrennikoff CP
    Int J Antimicrob Agents; 2006 Oct; 28(4):361-5. PubMed ID: 16956748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antifungal mechanisms of a plant defensin MtDef4 are not conserved between the ascomycete fungi Neurospora crassa and Fusarium graminearum.
    El-Mounadi K; Islam KT; Hernández-Ortiz P; Read ND; Shah DM
    Mol Microbiol; 2016 May; 100(3):542-59. PubMed ID: 26801962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential application of a fungal co-culture crude extract for the conservation of post-harvest fruits.
    González Y; Martínez-Soto D; de Los Santos-Villalobos S; Garcia-Marin LE; Juarez-Moreno K; Castro-Longoria E
    Braz J Microbiol; 2024 Jun; 55(2):1679-1691. PubMed ID: 38393617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CTBT (7-chlorotetrazolo[5,1-c]benzo[1,2,4]triazine) producing ROS affects growth and viability of filamentous fungi.
    Culakova H; Dzugasova V; Gbelska Y; Subik J
    FEMS Microbiol Lett; 2012 Mar; 328(2):138-43. PubMed ID: 22212016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Antifungal effect of high molecular weight chitosan on Candida spp isolated from clinical samples].
    Tapia CP; Soto DM; Vergara LG; Alburquerque CO; Maccioni AR; Matamata AM; Hermosilla GD; Bucarey SV
    Rev Chilena Infectol; 2009 Dec; 26(6):515-9. PubMed ID: 20098785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative study on antifungal activities of chitosan nanoparticles and chitosan silver nano composites against Fusarium oxysporum species complex.
    Dananjaya SHS; Erandani WKCU; Kim CH; Nikapitiya C; Lee J; De Zoysa M
    Int J Biol Macromol; 2017 Dec; 105(Pt 1):478-488. PubMed ID: 28709896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antifungal effect of high- and low-molecular-weight chitosan hydrochloride, carboxymethyl chitosan, chitosan oligosaccharide and N-acetyl-D-glucosamine against Candida albicans, Candida krusei and Candida glabrata.
    Seyfarth F; Schliemann S; Elsner P; Hipler UC
    Int J Pharm; 2008 Apr; 353(1-2):139-48. PubMed ID: 18164151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolism and Development during Conidial Germination in Response to a Carbon-Nitrogen-Rich Synthetic or a Natural Source of Nutrition in
    Wang Z; Miguel-Rojas C; Lopez-Giraldez F; Yarden O; Trail F; Townsend JP
    mBio; 2019 Mar; 10(2):. PubMed ID: 30914504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antifungal activity of PvD1 defensin involves plasma membrane permeabilization, inhibition of medium acidification, and induction of ROS in fungi cells.
    Mello EO; Ribeiro SF; Carvalho AO; Santos IS; Da Cunha M; Santa-Catarina C; Gomes VM
    Curr Microbiol; 2011 Apr; 62(4):1209-17. PubMed ID: 21170711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.