BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 25749425)

  • 1. COLD1: a cold sensor in rice.
    Shi Y; Yang S
    Sci China Life Sci; 2015 Apr; 58(4):409-10. PubMed ID: 25749425
    [No Abstract]   [Full Text] [Related]  

  • 2. Cold tolerance encoded in one SNP.
    Manishankar P; Kudla J
    Cell; 2015 Mar; 160(6):1045-6. PubMed ID: 25768901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. COLD1 confers chilling tolerance in rice.
    Ma Y; Dai X; Xu Y; Luo W; Zheng X; Zeng D; Pan Y; Lin X; Liu H; Zhang D; Xiao J; Guo X; Xu S; Niu Y; Jin J; Zhang H; Xu X; Li L; Wang W; Qian Q; Ge S; Chong K
    Cell; 2015 Mar; 160(6):1209-21. PubMed ID: 25728666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One SNP in COLD1 Determines Cold Tolerance during Rice Domestication.
    Shi Y; Gong Z
    J Genet Genomics; 2015 Apr; 42(4):133-4. PubMed ID: 25953351
    [No Abstract]   [Full Text] [Related]  

  • 5. [Functional conservation and diversification of cold shock domain proteins: a view from plants].
    Imai R; Kim MH
    Seikagaku; 2014 Aug; 86(4):474-8. PubMed ID: 25255630
    [No Abstract]   [Full Text] [Related]  

  • 6. [The mechanisms of Antartic vascular plants adaptation to abiotic environmental factors].
    Ozheredova IP; Parnikoza IY; Poronnik OO; Kozeretska IA; Demidov SV; Kunakh VA
    Tsitol Genet; 2015; 49(2):72-9. PubMed ID: 26030977
    [No Abstract]   [Full Text] [Related]  

  • 7. The rice cold-responsive calcium-dependent protein kinase OsCPK17 is regulated by alternative splicing and post-translational modifications.
    Almadanim MC; Gonçalves NM; Rosa MTG; Alexandre BM; Cordeiro AM; Rodrigues M; Saibo NJM; Soares CM; Romão CV; Oliveira MM; Abreu IA
    Biochim Biophys Acta Mol Cell Res; 2018 Feb; 1865(2):231-246. PubMed ID: 29100789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cold stress tolerance in rice: physiological changes, molecular mechanism, and future prospects.
    Liu CT; Wang W; Mao BG; Chu CC
    Yi Chuan; 2018 Mar; 40(3):171-185. PubMed ID: 29576541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative transcriptome analysis revealed the genotype specific cold response mechanism in tobacco.
    Hu R; Zhu X; Xiang S; Zhan Y; Zhu M; Yin H; Zhou Q; Zhu L; Zhang X; Liu Z
    Biochem Biophys Res Commun; 2016 Jan; 469(3):535-41. PubMed ID: 26692485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycine-rich RNA-binding proteins are functionally conserved in Arabidopsis thaliana and Oryza sativa during cold adaptation process.
    Kim JY; Kim WY; Kwak KJ; Oh SH; Han YS; Kang H
    J Exp Bot; 2010 May; 61(9):2317-25. PubMed ID: 20231330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The calcium-dependent kinase OsCPK24 functions in cold stress responses in rice.
    Liu Y; Xu C; Zhu Y; Zhang L; Chen T; Zhou F; Chen H; Lin Y
    J Integr Plant Biol; 2018 Feb; 60(2):173-188. PubMed ID: 29193704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Indeterminate Domain Protein ROC1 Regulates Chilling Tolerance via Activation of DREB1B/CBF1 in Rice.
    Dou M; Cheng S; Zhao B; Xuan Y; Shao M
    Int J Mol Sci; 2016 Feb; 17(3):233. PubMed ID: 26927068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative analysis of gene expression in response to cold stress in diverse rice genotypes.
    Moraes de Freitas GP; Basu S; Ramegowda V; Braga EB; Pereira A
    Biochem Biophys Res Commun; 2016 Feb; 471(1):253-9. PubMed ID: 26855133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rice calcium-dependent protein kinase OsCPK17 targets plasma membrane intrinsic protein and sucrose-phosphate synthase and is required for a proper cold stress response.
    Almadanim MC; Alexandre BM; Rosa MTG; Sapeta H; Leitão AE; Ramalho JC; Lam TT; Negrão S; Abreu IA; Oliveira MM
    Plant Cell Environ; 2017 Jul; 40(7):1197-1213. PubMed ID: 28102545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of OsCYP19-4 increases tolerance to cold stress and enhances grain yield in rice (Oryza sativa).
    Yoon DH; Lee SS; Park HJ; Lyu JI; Chong WS; Liu JR; Kim BG; Ahn JC; Cho HS
    J Exp Bot; 2016 Jan; 67(1):69-82. PubMed ID: 26453745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An osmotin from the resurrection plant Tripogon loliiformis (TlOsm) confers tolerance to multiple abiotic stresses in transgenic rice.
    Le TTT; Williams B; Mundree SG
    Physiol Plant; 2018 Jan; 162(1):13-34. PubMed ID: 28466470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stress-responsive gene RsICE1 from Raphanus sativus increases cold tolerance in rice.
    Man L; Xiang D; Wang L; Zhang W; Wang X; Qi G
    Protoplasma; 2017 Mar; 254(2):945-956. PubMed ID: 27473592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rice
    Lin D; Zheng K; Liu Z; Li Z; Teng S; Xu J; Dong Y
    Plant Genome; 2018 Mar; 11(1):. PubMed ID: 29505628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic analysis of a segregant population reveals candidate proteins linked to mealiness in peach.
    Almeida AM; Urra C; Moraga C; Jego M; Flores A; Meisel L; González M; Infante R; Defilippi BG; Campos-Vargas R; Orellana A
    J Proteomics; 2016 Jan; 131():71-81. PubMed ID: 26459401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice.
    Liu K; Wang L; Xu Y; Chen N; Ma Q; Li F; Chong K
    Planta; 2007 Sep; 226(4):1007-16. PubMed ID: 17549515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.