These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 25749483)

  • 21. Source localization of event-related potentials to pitch change mapped onto age-appropriate MRIs at 6 months of age.
    Hämäläinen JA; Ortiz-Mantilla S; Benasich AA
    Neuroimage; 2011 Feb; 54(3):1910-8. PubMed ID: 20951812
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Timbre-independent extraction of pitch in newborn infants.
    Háden GP; Stefanics G; Vestergaard MD; Denham SL; Sziller I; Winkler I
    Psychophysiology; 2009 Jan; 46(1):69-74. PubMed ID: 19055501
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Representation of harmonic frequencies in auditory memory: a mismatch negativity study.
    Zion-Golumbic E; Deouell LY; Whalen DH; Bentin S
    Psychophysiology; 2007 Sep; 44(5):671-9. PubMed ID: 17608799
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detecting violation in abstract pitch patterns with mismatch negativity.
    Xiao XZ; Wong HK; Wang Y; Zhao K; Zeng GQ; Yip LY; Wong GC; Tse CY
    Psychophysiology; 2018 Aug; 55(8):e13078. PubMed ID: 29572852
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential processing of terminal tone parts within structured and non-structured tones.
    Weise A; Müller D; Grimm S; Rübsamen R; Schröger E
    Neurosci Lett; 2007 Jun; 421(2):163-7. PubMed ID: 17570584
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Human auditory-cortex mechanisms of preattentive sound discrimination.
    Kropotov JD; Alho K; Näätänen R; Ponomarev VA; Kropotova OV; Anichkov AD; Nechaev VB
    Neurosci Lett; 2000 Feb; 280(2):87-90. PubMed ID: 10686384
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Processing acoustic change and novelty in newborn infants.
    Kushnerenko E; Winkler I; Horváth J; Näätänen R; Pavlov I; Fellman V; Huotilainen M
    Eur J Neurosci; 2007 Jul; 26(1):265-74. PubMed ID: 17573923
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sound frequency change detection in fetuses and newborns, a magnetoencephalographic study.
    Draganova R; Eswaran H; Murphy P; Huotilainen M; Lowery C; Preissl H
    Neuroimage; 2005 Nov; 28(2):354-61. PubMed ID: 16023867
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cortical representations sensitive to the number of perceived auditory objects emerge between 2 and 4 months of age: electrophysiological evidence.
    Folland NA; Butler BE; Payne JE; Trainor LJ
    J Cogn Neurosci; 2015 May; 27(5):1060-7. PubMed ID: 25436670
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pre-attentive and attentive processing of temporal and frequency characteristics within long sounds.
    Grimm S; Schröger E
    Brain Res Cogn Brain Res; 2005 Dec; 25(3):711-21. PubMed ID: 16253485
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Newborn brain event-related potentials revealing atypical processing of sound frequency and the subsequent association with later literacy skills in children with familial dyslexia.
    Leppänen PH; Hämäläinen JA; Salminen HK; Eklund KM; Guttorm TK; Lohvansuu K; Puolakanaho A; Lyytinen H
    Cortex; 2010; 46(10):1362-76. PubMed ID: 20656284
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Early integration of vowel and pitch processing: a mismatch negativity study.
    Lidji P; Jolicoeur P; Kolinsky R; Moreau P; Connolly JF; Peretz I
    Clin Neurophysiol; 2010 Apr; 121(4):533-41. PubMed ID: 20071227
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Auditory temporal grouping in newborn infants.
    Stefanics G; Háden G; Huotilainen M; Balázs L; Sziller I; Beke A; Fellman V; Winkler I
    Psychophysiology; 2007 Sep; 44(5):697-702. PubMed ID: 17532802
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Independent or integrated processing of interaural time and level differences in human auditory cortex?
    Altmann CF; Terada S; Kashino M; Goto K; Mima T; Fukuyama H; Furukawa S
    Hear Res; 2014 Jun; 312():121-7. PubMed ID: 24709274
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differential cortical processing of location and pitch changes in dichotic pitch.
    Johnson BW; Hautus MJ; Hayns AL; Fitzgibbon BM
    Neuroreport; 2006 Mar; 17(4):389-93. PubMed ID: 16514364
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Selective attention to sound location or pitch studied with event-related brain potentials and magnetic fields.
    Degerman A; Rinne T; Särkkä AK; Salmi J; Alho K
    Eur J Neurosci; 2008 Jun; 27(12):3329-41. PubMed ID: 18598270
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mismatch negativity of higher amplitude for melodic ascendance than descendance.
    Ruusuvirta TT; Astikainen P
    Neuroreport; 2012 Mar; 23(4):220-3. PubMed ID: 22246244
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evidence for Linear but Not Helical Automatic Representation of Pitch in the Human Auditory System.
    Regev TI; Nelken I; Deouell LY
    J Cogn Neurosci; 2019 May; 31(5):669-685. PubMed ID: 30657000
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preperceptual human number sense for sequential sounds, as revealed by mismatch negativity brain response?
    Ruusuvirta T; Huotilainen M; Näätänen R
    Cereb Cortex; 2007 Dec; 17(12):2777-9. PubMed ID: 17317679
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hemispheric lateralization for early auditory processing of lexical tones: dependence on pitch level and pitch contour.
    Wang XD; Wang M; Chen L
    Neuropsychologia; 2013 Sep; 51(11):2238-44. PubMed ID: 23911775
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.