These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
343 related articles for article (PubMed ID: 25749640)
1. Highly efficient capture and harvest of circulating tumor cells on a microfluidic chip integrated with herringbone and micropost arrays. Xue P; Wu Y; Guo J; Kang Y Biomed Microdevices; 2015 Apr; 17(2):39. PubMed ID: 25749640 [TBL] [Abstract][Full Text] [Related]
2. EpCAM-independent capture of circulating tumor cells with a 'universal CTC-chip'. Chikaishi Y; Yoneda K; Ohnaga T; Tanaka F Oncol Rep; 2017 Jan; 37(1):77-82. PubMed ID: 27840987 [TBL] [Abstract][Full Text] [Related]
3. A microchip filter device incorporating slit arrays and 3-D flow for detection of circulating tumor cells using CAV1-EpCAM conjugated microbeads. Kim YJ; Koo GB; Lee JY; Moon HS; Kim DG; Lee DG; Lee JY; Oh JH; Park JM; Kim MS; Woo HG; Kim SI; Kang P; Choi W; Sim TS; Park WY; Lee JG; Kim YS Biomaterials; 2014 Aug; 35(26):7501-10. PubMed ID: 24917030 [TBL] [Abstract][Full Text] [Related]
4. Capture, release and culture of circulating tumor cells from pancreatic cancer patients using an enhanced mixing chip. Sheng W; Ogunwobi OO; Chen T; Zhang J; George TJ; Liu C; Fan ZH Lab Chip; 2014 Jan; 14(1):89-98. PubMed ID: 24220648 [TBL] [Abstract][Full Text] [Related]
5. A PLGA nanofiber microfluidic device for highly efficient isolation and release of different phenotypic circulating tumor cells based on dual aptamers. Wu Z; Pan Y; Wang Z; Ding P; Gao T; Li Q; Hu M; Zhu W; Pei R J Mater Chem B; 2021 Mar; 9(9):2212-2220. PubMed ID: 33616137 [TBL] [Abstract][Full Text] [Related]
6. Two-stage microfluidic chip for selective isolation of circulating tumor cells (CTCs). Hyun KA; Lee TY; Lee SH; Jung HI Biosens Bioelectron; 2015 May; 67():86-92. PubMed ID: 25060749 [TBL] [Abstract][Full Text] [Related]
7. SSA-MOA: a novel CTC isolation platform using selective size amplification (SSA) and a multi-obstacle architecture (MOA) filter. Kim MS; Sim TS; Kim YJ; Kim SS; Jeong H; Park JM; Moon HS; Kim SI; Gurel O; Lee SS; Lee JG; Park JC Lab Chip; 2012 Aug; 12(16):2874-80. PubMed ID: 22684249 [TBL] [Abstract][Full Text] [Related]
8. Nano "fly paper" technology for the capture of circulating tumor cells. Wang S; Owens GE; Tseng HR Methods Mol Biol; 2011; 726():141-50. PubMed ID: 21424448 [TBL] [Abstract][Full Text] [Related]
9. Magnetic particles assisted capture and release of rare circulating tumor cells using wavy-herringbone structured microfluidic devices. Shi W; Wang S; Maarouf A; Uhl CG; He R; Yunus D; Liu Y Lab Chip; 2017 Sep; 17(19):3291-3299. PubMed ID: 28840927 [TBL] [Abstract][Full Text] [Related]
10. An integrated microfluidic chip system for single-cell secretion profiling of rare circulating tumor cells. Deng Y; Zhang Y; Sun S; Wang Z; Wang M; Yu B; Czajkowsky DM; Liu B; Li Y; Wei W; Shi Q Sci Rep; 2014 Dec; 4():7499. PubMed ID: 25511131 [TBL] [Abstract][Full Text] [Related]
11. A chip assisted immunomagnetic separation system for the efficient capture and in situ identification of circulating tumor cells. Tang M; Wen CY; Wu LL; Hong SL; Hu J; Xu CM; Pang DW; Zhang ZL Lab Chip; 2016 Apr; 16(7):1214-23. PubMed ID: 26928405 [TBL] [Abstract][Full Text] [Related]
12. Molecular Profiling of Pooled Circulating Tumor Cells from Prostate Cancer Patients Using a Dual-Antibody-Functionalized Microfluidic Device. Yin C; Wang Y; Ji J; Cai B; Chen H; Yang Z; Wang K; Luo C; Zhang W; Yuan C; Wang F Anal Chem; 2018 Mar; 90(6):3744-3751. PubMed ID: 29464943 [TBL] [Abstract][Full Text] [Related]
13. Highly dense, optically inactive silica microbeads for the isolation and identification of circulating tumor cells. Yoo CE; Moon HS; Kim YJ; Park JM; Park D; Han KY; Park K; Sun JM; Park WY Biomaterials; 2016 Jan; 75():271-278. PubMed ID: 26513419 [TBL] [Abstract][Full Text] [Related]
14. Improved detection by ensemble-decision aliquot ranking of circulating tumor cells with low numbers of a targeted surface antigen. Johnson ES; Anand RK; Chiu DT Anal Chem; 2015 Sep; 87(18):9389-95. PubMed ID: 26302174 [TBL] [Abstract][Full Text] [Related]
15. Simultaneous isolation and detection of circulating tumor cells with a microfluidic silicon-nanowire-array integrated with magnetic upconversion nanoprobes. Wang C; Ye M; Cheng L; Li R; Zhu W; Shi Z; Fan C; He J; Liu J; Liu Z Biomaterials; 2015 Jun; 54():55-62. PubMed ID: 25907039 [TBL] [Abstract][Full Text] [Related]
16. Size-selective collection of circulating tumor cells using Vortex technology. Sollier E; Go DE; Che J; Gossett DR; O'Byrne S; Weaver WM; Kummer N; Rettig M; Goldman J; Nickols N; McCloskey S; Kulkarni RP; Di Carlo D Lab Chip; 2014 Jan; 14(1):63-77. PubMed ID: 24061411 [TBL] [Abstract][Full Text] [Related]
17. Combination of antibody-coated, physical-based microfluidic chip with wave-shaped arrays for isolating circulating tumor cells. Chen H; Cao B; Chen H; Lin YS; Zhang J Biomed Microdevices; 2017 Sep; 19(3):66. PubMed ID: 28776234 [TBL] [Abstract][Full Text] [Related]
18. Microsieve lab-chip device for rapid enumeration and fluorescence in situ hybridization of circulating tumor cells. Lim LS; Hu M; Huang MC; Cheong WC; Gan AT; Looi XL; Leong SM; Koay ES; Li MH Lab Chip; 2012 Nov; 12(21):4388-96. PubMed ID: 22930096 [TBL] [Abstract][Full Text] [Related]
19. Microfluidic chip for graduated magnetic separation of circulating tumor cells by their epithelial cell adhesion molecule expression and magnetic nanoparticle binding. Williams PS; Moore LR; Joshi P; Goodin M; Zborowski M; Fleischman A J Chromatogr A; 2021 Jan; 1637():461823. PubMed ID: 33385746 [TBL] [Abstract][Full Text] [Related]
20. Selective isolation of magnetic nanoparticle-mediated heterogeneity subpopulation of circulating tumor cells using magnetic gradient based microfluidic system. Kwak B; Lee J; Lee D; Lee K; Kwon O; Kang S; Kim Y Biosens Bioelectron; 2017 Feb; 88():153-158. PubMed ID: 27503409 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]