BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 2574994)

  • 1. Characterization of a transport system for anionic amino acids in human fibroblast lysosomes.
    Collarini EJ; Pisoni RL; Christensen HN
    Biochim Biophys Acta; 1989 Dec; 987(2):139-44. PubMed ID: 2574994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Na(+)-dependent transport of anionic amino acids by preimplantation mouse blastocysts.
    Van Winkle LJ; Mann DF; Weimer BD; Campione AL
    Biochim Biophys Acta; 1991 Sep; 1068(2):231-6. PubMed ID: 1680398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of protein dissociation in the transport of acidic amino acids by the Ehrlich ascites tumor cell.
    Garcia-Sancho J; Sanchez A; Christensen HN
    Biochim Biophys Acta; 1977 Jan; 464(2):295-312. PubMed ID: 12815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pathways of L-glutamic acid transport in cultured human fibroblasts.
    Dall'Asta V; Gazzola GC; Franchi-Gazzola R; Bussolati O; Longo N; Guidotti GG
    J Biol Chem; 1983 May; 258(10):6371-9. PubMed ID: 6133863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrophysiological analysis of rat renal sugar and amino acid transport. V. Acidic amino acids.
    Samarzija I; Frömter E
    Pflugers Arch; 1982 May; 393(3):215-21. PubMed ID: 6124929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Important differences in cationic amino acid transport by lysosomal system c and system y+ of the human fibroblast.
    Pisoni RL; Thoene JG; Lemons RM; Christensen HN
    J Biol Chem; 1987 Nov; 262(31):15011-8. PubMed ID: 3499437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anionic amino acid uptake by microvillous membrane vesicles from human placenta.
    Moe AJ; Smith CH
    Am J Physiol; 1989 Nov; 257(5 Pt 1):C1005-11. PubMed ID: 2574537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular specificity of the tubular resorption of "acidic" amino acids. A continuous microperfusion study in rat kidney in vivo.
    Silbernagl S; Völkl H
    Pflugers Arch; 1983 Mar; 396(3):225-30. PubMed ID: 6133265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection and characterization of carrier-mediated cationic amino acid transport in lysosomes of normal and cystinotic human fibroblasts. Role in therapeutic cystine removal?
    Pisoni RL; Thoene JG; Christensen HN
    J Biol Chem; 1985 Apr; 260(8):4791-8. PubMed ID: 3921538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection and characterization of a transport system mediating cysteamine entry into human fibroblast lysosomes. Specificity for aminoethylthiol and aminoethylsulfide derivatives.
    Pisoni RL; Park GY; Velilla VQ; Thoene JG
    J Biol Chem; 1995 Jan; 270(3):1179-84. PubMed ID: 7836377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Na(+)-dependent glutamate transporter in human retinal pigment epithelial cells.
    Miyamoto Y; Del Monte MA
    Invest Ophthalmol Vis Sci; 1994 Sep; 35(10):3589-98. PubMed ID: 7916336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular uptake disguises action of L-glutamate on N-methyl-D-aspartate receptors. With an appendix: diffusion of transported amino acids into brain slices.
    Garthwaite J
    Br J Pharmacol; 1985 May; 85(1):297-307. PubMed ID: 2862941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separate and shared lysosomal transport of branched and aromatic dipolar amino acids.
    Stewart BH; Collarini EJ; Pisoni RL; Christensen HN
    Biochim Biophys Acta; 1989 Dec; 987(2):145-53. PubMed ID: 2605258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anionic amino acid transport systems in isolated basal plasma membrane of human placenta.
    Hoeltzli SD; Kelley LK; Moe AJ; Smith CH
    Am J Physiol; 1990 Jul; 259(1 Pt 1):C47-55. PubMed ID: 1973601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A cysteine-specific lysosomal transport system provides a major route for the delivery of thiol to human fibroblast lysosomes: possible role in supporting lysosomal proteolysis.
    Pisoni RL; Acker TL; Lisowski KM; Lemons RM; Thoene JG
    J Cell Biol; 1990 Feb; 110(2):327-35. PubMed ID: 2404990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of L-aspartate uptake by Streptomyces hydrogenans.
    Ring K; Gross W; Ehle H; Foit B
    J Gen Microbiol; 1977 Dec; 103(2):307-17. PubMed ID: 23409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural selectivity and molecular nature of L-glutamate transport in cultured human fibroblasts.
    Cooper B; Chebib M; Shen J; King NJ; Darvey IG; Kuchel PW; Rothstein JD; Balcar VJ
    Arch Biochem Biophys; 1998 May; 353(2):356-64. PubMed ID: 9606970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on the transport of anions and zwitterions of acidic amino acids in Streptomyces hydrogenans.
    Fritsch J; Gross W
    Z Naturforsch C Biosci; 1983; 38(7-8):617-20. PubMed ID: 6138907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a phosphate transport system in human fibroblast lysosomes.
    Pisoni RL
    J Biol Chem; 1991 Jan; 266(2):979-85. PubMed ID: 1824704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rat hepatoma cells express novel transport systems for glutamine and glutamate in addition to those present in normal rat hepatocytes.
    McGivan JD
    Biochem J; 1998 Feb; 330 ( Pt 1)(Pt 1):255-60. PubMed ID: 9461518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.