These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 2575009)

  • 21. Differences in the immunoreactivity to phenylethanolamine-N-methyltransferase in the central adrenergic neurons of four strains of rats.
    Alonso G; Gaillet S
    Cell Tissue Res; 1991 Aug; 265(2):307-15. PubMed ID: 1934029
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Metabolism and pathology of catecholamines].
    Traba ML
    Rev Clin Esp; 1981 Jul 15-31; 162(1-2):5-13. PubMed ID: 6117933
    [No Abstract]   [Full Text] [Related]  

  • 23. Calcitonin gene-related peptide (CGRP) in the rat substantia innominata and globus pallidus: a light and electron microscopic immunocytochemical study.
    Chang HT; Kuo H
    Brain Res; 1989 Aug; 495(1):167-72. PubMed ID: 2789088
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distributions of tyrosine hydroxylase-, dopamine-beta-hydroxylase-, and phenylethanolamine-N-methyltransferase-immunoreactive neurons in the brain of the hamster (Mesocricetus auratus).
    Vincent SR
    J Comp Neurol; 1988 Feb; 268(4):584-99. PubMed ID: 2895779
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Brainstem afferents to the tuberomammillary nucleus in the rat brain with special reference to monoaminergic innervation.
    Ericson H; Blomqvist A; Köhler C
    J Comp Neurol; 1989 Mar; 281(2):169-92. PubMed ID: 2565348
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distribution of phenylethanolamine N-methyltransferase cell bodies, axons, and terminals in monkey brainstem: an immunohistochemical mapping study.
    Carlton SM; Honda CN; Denoroy L
    J Comp Neurol; 1989 Sep; 287(3):273-85. PubMed ID: 2778106
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adrenergic input from medullary ventrolateral C1 cells to the nucleus raphe pallidus of the cat, as demonstrated by a double immunostaining technique.
    Luppi PH; Fort P; Kitahama K; Denoroy L; Jouvet M
    Neurosci Lett; 1989 Nov; 106(1-2):29-35. PubMed ID: 2586829
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Abundance in the embryonic brainstem of adrenaline during the absence of detectable tyrosine hydroxylase activity.
    Foster GA; Sundström E; Helmer-Matyjek E; Goldstein M; Hökfelt T
    J Neurochem; 1987 Jan; 48(1):202-7. PubMed ID: 2878972
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Postnatal development of phenylethanolamine-N-methyltransferase activity of rat retina.
    Cohen J
    Neurosci Lett; 1987 Dec; 83(1-2):138-42. PubMed ID: 2894621
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interactions between orexin-immunoreactive fibers and adrenaline or noradrenaline-expressing neurons of the lower brainstem in rats and mice.
    Puskás N; Papp RS; Gallatz K; Palkovits M
    Peptides; 2010 Aug; 31(8):1589-97. PubMed ID: 20434498
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Direct catecholaminergic-cholinergic interactions in the basal forebrain. III. Adrenergic innervation of choline acetyltransferase-containing neurons in the rat.
    Hajszán T; Zaborszky L
    J Comp Neurol; 2002 Jul; 449(2):141-57. PubMed ID: 12115685
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Sympatho-neuronal and sympatho-adrenal activity in experimental and essential hypertension].
    Grobecker H
    Verh Dtsch Ges Kreislaufforsch; 1977; 43():2-9. PubMed ID: 26147
    [No Abstract]   [Full Text] [Related]  

  • 33. Early increase in phenylethanolamine-N-methyltransferase activity in a new strain of spontaneously hypertensive rats.
    Renaud B; Fournière S; Denoroy L; Vincent M; Pujol JF; Sassard J
    Brain Res; 1978 Dec; 159(1):149-59. PubMed ID: 31964
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Catecholaminergic and GABAergic anatomical relationship in the rat substantia nigra, locus coeruleus, and hypothalamic median eminence: immunocytochemical visualization of biosynthetic enzymes on serial semithin plastic-embedded sections.
    Berod A; Chat M; Paut L; Tappaz M
    J Histochem Cytochem; 1984 Dec; 32(12):1331-8. PubMed ID: 6150057
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct catecholaminergic-cholinergic interactions in the basal forebrain. I. Dopamine-beta-hydroxylase- and tyrosine hydroxylase input to cholinergic neurons.
    Zaborszky L; Cullinan WE
    J Comp Neurol; 1996 Oct; 374(4):535-54. PubMed ID: 8910734
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Immunocytochemical localization of dopamine and its synthetic enzymes in the central nervous system of the lamprey Lampetra fluviatilis.
    Pierre J; Mahouche M; Suderevskaya EI; Repérant J; Ward R
    J Comp Neurol; 1997 Mar; 380(1):119-35. PubMed ID: 9073087
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Organization of central adrenergic pathways: I. Relationships of ventrolateral medullary projections to the hypothalamus and spinal cord.
    Tucker DC; Saper CB; Ruggiero DA; Reis DJ
    J Comp Neurol; 1987 May; 259(4):591-603. PubMed ID: 2885348
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Developmental regulation of phenylethanolamine N-methyl transferase in avian sympathetic nerves.
    David JC; Rush RA
    J Neurochem; 1984 Dec; 43(6):1527-31. PubMed ID: 6491667
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Organization of adrenergic inputs to the paraventricular and supraoptic nuclei of the hypothalamus in the rat.
    Cunningham ET; Bohn MC; Sawchenko PE
    J Comp Neurol; 1990 Feb; 292(4):651-67. PubMed ID: 2324319
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative immunocytochemical study of the catecholaminergic and peptidergic afferent innervation to the dorsal vagal complex in rat and guinea pig.
    Siaud P; Denoroy L; Assenmacher I; Alonso G
    J Comp Neurol; 1989 Dec; 290(3):323-35. PubMed ID: 2574199
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.