BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 25750417)

  • 1. Detecting and overcoming systematic bias in high-throughput screening technologies: a comprehensive review of practical issues and methodological solutions.
    Caraus I; Alsuwailem AA; Nadon R; Makarenkov V
    Brief Bioinform; 2015 Nov; 16(6):974-86. PubMed ID: 25750417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detecting and removing multiplicative spatial bias in high-throughput screening technologies.
    Caraus I; Mazoure B; Nadon R; Makarenkov V
    Bioinformatics; 2017 Oct; 33(20):3258-3267. PubMed ID: 28633418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prevention, diagnosis and treatment of high-throughput sequencing data pathologies.
    Zhou X; Rokas A
    Mol Ecol; 2014 Apr; 23(7):1679-700. PubMed ID: 24471475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and Correction of Additive and Multiplicative Spatial Biases in Experimental High-Throughput Screening.
    Mazoure B; Caraus I; Nadon R; Makarenkov V
    SLAS Discov; 2018 Jun; 23(5):448-458. PubMed ID: 29346010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and correction of spatial bias are essential for obtaining quality data in high-throughput screening technologies.
    Mazoure B; Nadon R; Makarenkov V
    Sci Rep; 2017 Sep; 7(1):11921. PubMed ID: 28931934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic error detection in experimental high-throughput screening.
    Dragiev P; Nadon R; Makarenkov V
    BMC Bioinformatics; 2011 Jan; 12():25. PubMed ID: 21247425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HTS-Corrector: software for the statistical analysis and correction of experimental high-throughput screening data.
    Makarenkov V; Kevorkov D; Zentilli P; Gagarin A; Malo N; Nadon R
    Bioinformatics; 2006 Jun; 22(11):1408-9. PubMed ID: 16595559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two effective methods for correcting experimental high-throughput screening data.
    Dragiev P; Nadon R; Makarenkov V
    Bioinformatics; 2012 Jul; 28(13):1775-82. PubMed ID: 22563067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive processing of high-throughput small RNA sequencing data including quality checking, normalization, and differential expression analysis using the UEA sRNA Workbench.
    Beckers M; Mohorianu I; Stocks M; Applegate C; Dalmay T; Moulton V
    RNA; 2017 Jun; 23(6):823-835. PubMed ID: 28289155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control-Plate Regression (CPR) Normalization for High-Throughput Screens with Many Active Features.
    Murie C; Barette C; Lafanechère L; Nadon R
    J Biomol Screen; 2014 Jun; 19(5):661-71. PubMed ID: 24352083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical analysis of systematic errors in high-throughput screening.
    Kevorkov D; Makarenkov V
    J Biomol Screen; 2005 Sep; 10(6):557-67. PubMed ID: 16103415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying actives from HTS data sets: practical approaches for the selection of an appropriate HTS data-processing method and quality control review.
    Shun TY; Lazo JS; Sharlow ER; Johnston PA
    J Biomol Screen; 2011 Jan; 16(1):1-14. PubMed ID: 21160066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Establishing an Infrastructure for High-Throughput Short-Interfering RNA Screening.
    Yin H; Sereduk C; Tang N
    Methods Mol Biol; 2016; 1470():1-13. PubMed ID: 27581280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correcting nucleotide-specific biases in high-throughput sequencing data.
    Wang JR; Quach B; Furey TS
    BMC Bioinformatics; 2017 Aug; 18(1):357. PubMed ID: 28764645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating experimental and analytic approaches to improve data quality in genome-wide RNAi screens.
    Zhang XD; Espeseth AS; Johnson EN; Chin J; Gates A; Mitnaul LJ; Marine SD; Tian J; Stec EM; Kunapuli P; Holder DJ; Heyse JF; Strulovici B; Ferrer M
    J Biomol Screen; 2008 Jun; 13(5):378-89. PubMed ID: 18480473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An efficient method for the detection and elimination of systematic error in high-throughput screening.
    Makarenkov V; Zentilli P; Kevorkov D; Gagarin A; Malo N; Nadon R
    Bioinformatics; 2007 Jul; 23(13):1648-57. PubMed ID: 17463024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel trends in high-throughput screening.
    Mayr LM; Bojanic D
    Curr Opin Pharmacol; 2009 Oct; 9(5):580-8. PubMed ID: 19775937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust statistical methods for hit selection in RNA interference high-throughput screening experiments.
    Zhang XD; Yang XC; Chung N; Gates A; Stec E; Kunapuli P; Holder DJ; Ferrer M; Espeseth AS
    Pharmacogenomics; 2006 Apr; 7(3):299-309. PubMed ID: 16610941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel specific edge effect correction method for RNA interference screenings.
    Carralot JP; Ogier A; Boese A; Genovesio A; Brodin P; Sommer P; Dorval T
    Bioinformatics; 2012 Jan; 28(2):261-8. PubMed ID: 22121160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advanced Virus Detection Technologies Interest Group (AVDTIG): Efforts on High Throughput Sequencing (HTS) for Virus Detection.
    Khan AS; Vacante DA; Cassart JP; Ng SH; Lambert C; Charlebois RL; King KE
    PDA J Pharm Sci Technol; 2016 11/12; 70(6):591-595. PubMed ID: 27593693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.