These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 25750417)

  • 21. Next-generation environmental diversity surveys of foraminifera: preparing the future.
    Pawlowski J; Lejzerowicz F; Esling P
    Biol Bull; 2014 Oct; 227(2):93-106. PubMed ID: 25411369
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Overcoming bias and systematic errors in next generation sequencing data.
    Taub MA; Corrada Bravo H; Irizarry RA
    Genome Med; 2010 Dec; 2(12):87. PubMed ID: 21144010
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Current Perspectives on High-Throughput Sequencing (HTS) for Adventitious Virus Detection: Upstream Sample Processing and Library Preparation.
    Ng SH; Braxton C; Eloit M; Feng SF; Fragnoud R; Mallet L; Mee ET; Sathiamoorthy S; Vandeputte O; Khan AS
    Viruses; 2018 Oct; 10(10):. PubMed ID: 30332784
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-throughput screening: update on practices and success.
    Fox S; Farr-Jones S; Sopchak L; Boggs A; Nicely HW; Khoury R; Biros M
    J Biomol Screen; 2006 Oct; 11(7):864-9. PubMed ID: 16973922
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Systematic comparison of small RNA library preparation protocols for next-generation sequencing.
    Dard-Dascot C; Naquin D; d'Aubenton-Carafa Y; Alix K; Thermes C; van Dijk E
    BMC Genomics; 2018 Feb; 19(1):118. PubMed ID: 29402217
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An Automatic Quality Control Pipeline for High-Throughput Screening Hit Identification.
    Zhai Y; Chen K; Zhong Y; Zhou B; Ainscow E; Wu YT; Zhou Y
    J Biomol Screen; 2016 Sep; 21(8):832-41. PubMed ID: 27313114
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The UEA Small RNA Workbench: A Suite of Computational Tools for Small RNA Analysis.
    Mohorianu I; Stocks MB; Applegate CS; Folkes L; Moulton V
    Methods Mol Biol; 2017; 1580():193-224. PubMed ID: 28439835
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact of normalization methods on high-throughput screening data with high hit rates and drug testing with dose-response data.
    Mpindi JP; Swapnil P; Dmitrii B; Jani S; Saeed K; Wennerberg K; Aittokallio T; Östling P; Kallioniemi O
    Bioinformatics; 2015 Dec; 31(23):3815-21. PubMed ID: 26254433
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Challenges and Opportunities in Enabling High-Throughput, Miniaturized High Content Screening.
    Nickischer D; Elkin L; Cloutier N; O'Connell J; Banks M; Weston A
    Methods Mol Biol; 2018; 1683():165-191. PubMed ID: 29082493
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microfluidic systems for high-throughput and high-content screening using the nematode Caenorhabditis elegans.
    Cornaglia M; Lehnert T; Gijs MAM
    Lab Chip; 2017 Nov; 17(22):3736-3759. PubMed ID: 28840220
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anticancer drug development incorporating high-content screening and RNAi: synergistic approaches to improve target identification and validation.
    Haney SA
    Expert Opin Drug Discov; 2006 Jun; 1(1):19-29. PubMed ID: 23506030
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional Genomics in Pharmaceutical Drug Discovery.
    Adams R; Steckel M; Nicke B
    Handb Exp Pharmacol; 2016; 232():25-41. PubMed ID: 26330261
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quality control of RNA-seq experiments.
    Li X; Nair A; Wang S; Wang L
    Methods Mol Biol; 2015; 1269():137-46. PubMed ID: 25577376
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Increasing the Content of High-Content Screening: An Overview.
    Singh S; Carpenter AE; Genovesio A
    J Biomol Screen; 2014 Jun; 19(5):640-50. PubMed ID: 24710339
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Primer ID Validates Template Sampling Depth and Greatly Reduces the Error Rate of Next-Generation Sequencing of HIV-1 Genomic RNA Populations.
    Zhou S; Jones C; Mieczkowski P; Swanstrom R
    J Virol; 2015 Aug; 89(16):8540-55. PubMed ID: 26041299
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comprehensive analysis of high-throughput screens with HiTSeekR.
    List M; Schmidt S; Christiansen H; Rehmsmeier M; Tan Q; Mollenhauer J; Baumbach J
    Nucleic Acids Res; 2016 Aug; 44(14):6639-48. PubMed ID: 27330136
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improving detection of rare biological events in high-throughput screens.
    Murie C; Barette C; Button J; Lafanechère L; Nadon R
    J Biomol Screen; 2015 Feb; 20(2):230-41. PubMed ID: 25190066
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High throughput sequencing of in vitro selections of mRNA-displayed peptides: data analysis and applications.
    Blanco C; Verbanic S; Seelig B; Chen IA
    Phys Chem Chem Phys; 2020 Mar; 22(12):6492-6506. PubMed ID: 31967131
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fast and accurate mapping of Complete Genomics reads.
    Lee D; Hormozdiari F; Xin H; Hach F; Mutlu O; Alkan C
    Methods; 2015 Jun; 79-80():3-10. PubMed ID: 25461772
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.