These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 25750417)

  • 41. Effect-Size Measures as Descriptors of Assay Quality in High-Content Screening: A Brief Review of Some Available Methodologies.
    Rajwa B
    Assay Drug Dev Technol; 2017 Jan; 15(1):15-29. PubMed ID: 27788017
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Multivariate Computational Method to Analyze High-Content RNAi Screening Data.
    Rameseder J; Krismer K; Dayma Y; Ehrenberger T; Hwang MK; Airoldi EM; Floyd SR; Yaffe MB
    J Biomol Screen; 2015 Sep; 20(8):985-97. PubMed ID: 25918037
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Correction of Microplate Data from High-Throughput Screening.
    Wang Y; Huang R
    Methods Mol Biol; 2016; 1473():123-34. PubMed ID: 27518630
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A novel ultra high-throughput 16S rRNA gene amplicon sequencing library preparation method for the Illumina HiSeq platform.
    de Muinck EJ; Trosvik P; Gilfillan GD; Hov JR; Sundaram AYM
    Microbiome; 2017 Jul; 5(1):68. PubMed ID: 28683838
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Affinity-based screening techniques: their impact and benefit to increase the number of high quality leads.
    Bergsdorf C; Ottl J
    Expert Opin Drug Discov; 2010 Nov; 5(11):1095-107. PubMed ID: 22827747
    [TBL] [Abstract][Full Text] [Related]  

  • 46. HCS-Analyzer: open source software for high-content screening data correction and analysis.
    Ogier A; Dorval T
    Bioinformatics; 2012 Jul; 28(14):1945-6. PubMed ID: 22586178
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mass spectrometric techniques for label-free high-throughput screening in drug discovery.
    Roddy TP; Horvath CR; Stout SJ; Kenney KL; Ho PI; Zhang JH; Vickers C; Kaushik V; Hubbard B; Wang YK
    Anal Chem; 2007 Nov; 79(21):8207-13. PubMed ID: 17902631
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Next-generation sequencing applied to flower development: RNA-seq.
    He J; Jiao Y
    Methods Mol Biol; 2014; 1110():401-11. PubMed ID: 24395272
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Utilization of Multidimensional Data in the Analysis of Ultra-High-Throughput High Content Phenotypic Screens.
    Wardwell-Swanson J; Hu Y
    Methods Mol Biol; 2018; 1683():267-290. PubMed ID: 29082498
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Targeted High-Throughput Next-Generation Sequencing Panel for Clinical Screening of Mutations, Gene Amplifications, and Fusions in Solid Tumors.
    Luthra R; Patel KP; Routbort MJ; Broaddus RR; Yau J; Simien C; Chen W; Hatfield DZ; Medeiros LJ; Singh RR
    J Mol Diagn; 2017 Mar; 19(2):255-264. PubMed ID: 28017569
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Robustness of Massively Parallel Sequencing Platforms.
    Kavak P; Yüksel B; Aksu S; Kulekci MO; Güngör T; Hach F; Şahinalp SC; ; Alkan C; Sağıroğlu MŞ
    PLoS One; 2015; 10(9):e0138259. PubMed ID: 26382624
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Origin and evolution of high throughput screening.
    Pereira DA; Williams JA
    Br J Pharmacol; 2007 Sep; 152(1):53-61. PubMed ID: 17603542
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Rank ordering plate data facilitates data visualization and normalization in high-throughput screening.
    Mangat CS; Bharat A; Gehrke SS; Brown ED
    J Biomol Screen; 2014 Oct; 19(9):1314-20. PubMed ID: 24828052
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Drug-target identification in Drosophila cells: combining high-throughout RNAi and small-molecule screens.
    Perrimon N; Friedman A; Mathey-Prevot B; Eggert US
    Drug Discov Today; 2007 Jan; 12(1-2):28-33. PubMed ID: 17198970
    [TBL] [Abstract][Full Text] [Related]  

  • 55. From genome to phenome--RNAi library screening and hit characterization using signaling pathway analysis.
    Chatterjee-Kishore M
    Curr Opin Drug Discov Devel; 2006 Mar; 9(2):231-9. PubMed ID: 16566293
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Accurate Sample Assignment in a Multiplexed, Ultrasensitive, High-Throughput Sequencing Assay for Minimal Residual Disease.
    Bartram J; Mountjoy E; Brooks T; Hancock J; Williamson H; Wright G; Moppett J; Goulden N; Hubank M
    J Mol Diagn; 2016 Jul; 18(4):494-506. PubMed ID: 27183494
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Plate-based diversity subset screening generation 2: an improved paradigm for high-throughput screening of large compound files.
    Bell AS; Bradley J; Everett JR; Loesel J; McLoughlin D; Mills J; Peakman MC; Sharp RE; Williams C; Zhu H
    Mol Divers; 2016 Nov; 20(4):789-803. PubMed ID: 27631533
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Using information from historical high-throughput screens to predict active compounds.
    Riniker S; Wang Y; Jenkins JL; Landrum GA
    J Chem Inf Model; 2014 Jul; 54(7):1880-91. PubMed ID: 24933016
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Further comparison of primary hit identification by different assay technologies and effects of assay measurement variability.
    Wu X; Sills MA; Zhang JH
    J Biomol Screen; 2005 Sep; 10(6):581-9. PubMed ID: 16103421
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pysim-sv: a package for simulating structural variation data with GC-biases.
    Xia Y; Liu Y; Deng M; Xi R
    BMC Bioinformatics; 2017 Mar; 18(Suppl 3):53. PubMed ID: 28361688
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.