BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 25750614)

  • 1. Epigenetic regulation in the inner ear and its potential roles in development, protection, and regeneration.
    Layman WS; Zuo J
    Front Cell Neurosci; 2014; 8():446. PubMed ID: 25750614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epigenetic inheritance of cell fates during embryonic development.
    Cheedipudi S; Genolet O; Dobreva G
    Front Genet; 2014; 5():19. PubMed ID: 24550937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of epigenetic modifications in sensory hair cell development, survival, and regulation.
    Xiao Y; Li D
    Front Cell Neurosci; 2023; 17():1210279. PubMed ID: 37388412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into inner ear-specific gene regulation: Epigenetics and non-coding RNAs in inner ear development and regeneration.
    Doetzlhofer A; Avraham KB
    Semin Cell Dev Biol; 2017 May; 65():69-79. PubMed ID: 27836639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromatin modifiers and histone modifications in bone formation, regeneration, and therapeutic intervention for bone-related disease.
    Gordon JAR; Stein JL; Westendorf JJ; van Wijnen AJ
    Bone; 2015 Dec; 81():739-745. PubMed ID: 25836763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Approaches for the study of epigenetic modifications in the inner ear and related tissues.
    Walters BJ; Cox BC
    Hear Res; 2019 May; 376():69-85. PubMed ID: 30679030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epigenetic control in skin development, homeostasis and injury repair.
    Kang S; Chovatiya G; Tumbar T
    Exp Dermatol; 2019 Apr; 28(4):453-463. PubMed ID: 30624812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epigenetic mechanisms of inner ear development.
    Balendran V; Ritter KE; Martin DM
    Hear Res; 2022 Dec; 426():108440. PubMed ID: 35063312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coordinating Regulation of Gene Expression in Cardiovascular Disease: Interactions between Chromatin Modifiers and Transcription Factors.
    Bauer AJ; Martin KA
    Front Cardiovasc Med; 2017; 4():19. PubMed ID: 28428957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mammalian auditory hair cell regeneration/repair and protection: a review and future directions.
    Feghali JG; Lefebvre PP; Staecker H; Kopke R; Frenz DA; Malgrange B; Liu W; Moonen G; Ruben RJ; Van de Water TR
    Ear Nose Throat J; 1998 Apr; 77(4):276, 280, 282-5. PubMed ID: 9581394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenetic Control of Early Mouse Development.
    Lim CY; Knowles BB; Solter D; Messerschmidt DM
    Curr Top Dev Biol; 2016; 120():311-60. PubMed ID: 27475856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epigenetic interplay between histone modifications and DNA methylation in gene silencing.
    Vaissière T; Sawan C; Herceg Z
    Mutat Res; 2008; 659(1-2):40-8. PubMed ID: 18407786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atoh1 and other related key regulators in the development of auditory sensory epithelium in the mammalian inner ear: function and interplay.
    Zhong C; Fu Y; Pan W; Yu J; Wang J
    Dev Biol; 2019 Feb; 446(2):133-141. PubMed ID: 30605626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Connections between metabolism and epigenetic modifications in cancer.
    Wang G; Han JJ
    Med Rev (2021); 2021 Dec; 1(2):199-221. PubMed ID: 37724300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding neurological disease mechanisms in the era of epigenetics.
    Qureshi IA; Mehler MF
    JAMA Neurol; 2013 Jun; 70(6):703-10. PubMed ID: 23571666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting cellular memory to reprogram the epigenome, restore potential, and improve somatic cell nuclear transfer.
    Eilertsen KJ; Power RA; Harkins LL; Misica P
    Anim Reprod Sci; 2007 Mar; 98(1-2):129-46. PubMed ID: 17166676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histones, Their Variants and Post-translational Modifications in Zebrafish Development.
    Cavalieri V
    Front Cell Dev Biol; 2020; 8():456. PubMed ID: 32582716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epigenetic regulation of stemness maintenance in the neurogenic niches.
    Montalbán-Loro R; Domingo-Muelas A; Bizy A; Ferrón SR
    World J Stem Cells; 2015 May; 7(4):700-10. PubMed ID: 26029342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. State of the Art: trxG Factor Regulation of Post-embryonic Plant Development.
    Fletcher JC
    Front Plant Sci; 2017; 8():1925. PubMed ID: 29184559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epigenetic modifications in the nervous system and their impact upon cognitive impairments.
    Rudenko A; Tsai LH
    Neuropharmacology; 2014 May; 80():70-82. PubMed ID: 24495398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.