These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 25750629)

  • 41. Effects of task-irrelevant or filler items on brain mechanisms of visual spatial attention.
    Drisdelle BL; Corriveau I; Fortier-Gauthier U; Jolicoeur P
    Psychophysiology; 2020 Nov; 57(11):e13644. PubMed ID: 32710667
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Probing the Neural Mechanisms for Distractor Filtering and Their History-Contingent Modulation by Means of TMS.
    Lega C; Ferrante O; Marini F; Santandrea E; Cattaneo L; Chelazzi L
    J Neurosci; 2019 Sep; 39(38):7591-7603. PubMed ID: 31387915
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The attentional blink freezes spatial attention allocation to targets, not distractors: evidence from human electrophysiology.
    Pomerleau VJ; Fortier-Gauthier U; Corriveau I; McDonald JJ; Dell'Acqua R; Jolicœur P
    Brain Res; 2014 Apr; 1559():33-45. PubMed ID: 24607298
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electrophysiological indices of target and distractor processing in visual search.
    Hickey C; Di Lollo V; McDonald JJ
    J Cogn Neurosci; 2009 Apr; 21(4):760-75. PubMed ID: 18564048
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Statistical regularities cause attentional suppression with target-matching distractors.
    Kerzel D; Huynh Cong S
    Atten Percept Psychophys; 2021 Jan; 83(1):270-282. PubMed ID: 33251562
    [TBL] [Abstract][Full Text] [Related]  

  • 46. On the electrophysiological evidence for the capture of visual attention.
    McDonald JJ; Green JJ; Jannati A; Di Lollo V
    J Exp Psychol Hum Percept Perform; 2013 Jun; 39(3):849-60. PubMed ID: 23163789
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Reward History Modulates the Processing of Task-Irrelevant Emotional Faces in a Demanding Task.
    Chen NX; Wei P
    Brain Sci; 2023 May; 13(6):. PubMed ID: 37371354
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Top-down deactivation of interference from irrelevant spatial or verbal stimulus features.
    Frings C; Wühr P
    Atten Percept Psychophys; 2014 Nov; 76(8):2360-74. PubMed ID: 24980154
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nasotemporal ERP differences: evidence for increased inhibition of temporal distractors.
    Huber-Huber C; Grubert A; Ansorge U; Eimer M
    J Neurophysiol; 2015 Apr; 113(7):2210-9. PubMed ID: 25589587
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The mutations paradigm: assessing the time course of distractor processing.
    Max R; Tsal Y
    Atten Percept Psychophys; 2015 Oct; 77(7):2344-55. PubMed ID: 26084775
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The control of attentional target selection in a colour/colour conjunction task.
    Berggren N; Eimer M
    Atten Percept Psychophys; 2016 Nov; 78(8):2383-2396. PubMed ID: 27357843
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Stimuli that signal the availability of reward break into attentional focus.
    Wang L; Li S; Zhou X; Theeuwes J
    Vision Res; 2018 Mar; 144():20-28. PubMed ID: 29408161
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electrophysiological evidence for target facilitation without distractor suppression in two-stimulus search displays.
    Forschack N; Gundlach C; Hillyard S; Müller MM
    Cereb Cortex; 2022 Aug; 32(17):3816-3828. PubMed ID: 35034125
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Neural mechanisms of surround attenuation and distractor competition in visual search.
    Boehler CN; Tsotsos JK; Schoenfeld MA; Heinze HJ; Hopf JM
    J Neurosci; 2011 Apr; 31(14):5213-24. PubMed ID: 21471356
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Distractors less salient than targets capture attention rather than producing non-spatial filtering costs.
    Koch AI; Müller HJ; Zehetleitner M
    Acta Psychol (Amst); 2013 Sep; 144(1):61-72. PubMed ID: 23747508
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tracking the location of visuospatial attention in a contingent capture paradigm.
    Leblanc E; Prime DJ; Jolicoeur P
    J Cogn Neurosci; 2008 Apr; 20(4):657-71. PubMed ID: 18052780
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Statistical learning of distractor shape modulates attentional capture.
    Kim H; Ogden A; Anderson BA
    Vision Res; 2023 Jan; 202():108155. PubMed ID: 36417810
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Attentional capture is modulated by stimulus saliency in visual search as evidenced by event-related potentials and alpha oscillations.
    Forschack N; Gundlach C; Hillyard S; Müller MM
    Atten Percept Psychophys; 2023 Apr; 85(3):685-704. PubMed ID: 36525202
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Capture or suppression? Attentional allocation upon reward and loss-associated nonsalient distractors are supported by distinct neural mechanisms: An EEG study.
    Jiang Y; Cui C; Liu M; Zhang X
    Neuropsychologia; 2021 Jul; 157():107879. PubMed ID: 33957194
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dynamics of Feature-based Attentional Selection during Color-Shape Conjunction Search.
    Lee J; Leonard CJ; Luck SJ; Geng JJ
    J Cogn Neurosci; 2018 Dec; 30(12):1773-1787. PubMed ID: 30063176
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.