These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 25750697)

  • 41. Practical considerations for sampling and data analysis in contemporary metagenomics-based environmental studies.
    Staley C; Sadowsky MJ
    J Microbiol Methods; 2018 Nov; 154():14-18. PubMed ID: 30287354
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Proteogenomic approaches for the molecular characterization of natural microbial communities.
    Banfield JF; Verberkmoes NC; Hettich RL; Thelen MP
    OMICS; 2005; 9(4):301-33. PubMed ID: 16402891
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Metaproteomics to unravel major microbial players in leaf litter and soil environments: challenges and perspectives.
    Becher D; Bernhardt J; Fuchs S; Riedel K
    Proteomics; 2013 Oct; 13(18-19):2895-909. PubMed ID: 23894095
    [TBL] [Abstract][Full Text] [Related]  

  • 44. MG-RAST, a Metagenomics Service for Analysis of Microbial Community Structure and Function.
    Keegan KP; Glass EM; Meyer F
    Methods Mol Biol; 2016; 1399():207-33. PubMed ID: 26791506
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Interrogating the role of the milk microbiome in mastitis in the multi-omics era.
    Couvillion SP; Mostoller KE; Williams JE; Pace RM; Stohel IL; Peterson HK; Nicora CD; Nakayasu ES; Webb-Robertson BM; McGuire MA; McGuire MK; Metz TO
    Front Microbiol; 2023; 14():1105675. PubMed ID: 36819069
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Need for Laboratory Ecosystems To Unravel the Structures and Functions of Soil Microbial Communities Mediated by Chemistry.
    Zhalnina K; Zengler K; Newman D; Northen TR
    mBio; 2018 Jul; 9(4):. PubMed ID: 30018110
    [TBL] [Abstract][Full Text] [Related]  

  • 47. From Sample to Multi-Omics Conclusions in under 48 Hours.
    Quinn RA; Navas-Molina JA; Hyde ER; Song SJ; Vázquez-Baeza Y; Humphrey G; Gaffney J; Minich JJ; Melnik AV; Herschend J; DeReus J; Durant A; Dutton RJ; Khosroheidari M; Green C; da Silva R; Dorrestein PC; Knight R
    mSystems; 2016; 1(2):. PubMed ID: 27822524
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modeling Microbial Community Networks: Methods and Tools for Studying Microbial Interactions.
    Srinivasan S; Jnana A; Murali TS
    Microb Ecol; 2024 Apr; 87(1):56. PubMed ID: 38587642
    [TBL] [Abstract][Full Text] [Related]  

  • 49. How Do the Players Play? A Post-Genomic Analysis Paradigm to Understand Aquatic Ecosystem Processes.
    Reid T; Bergsveinson J
    Front Mol Biosci; 2021; 8():662888. PubMed ID: 34026835
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Principles for designing synthetic microbial communities.
    Johns NI; Blazejewski T; Gomes AL; Wang HH
    Curr Opin Microbiol; 2016 Jun; 31():146-153. PubMed ID: 27084981
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Combining metagenomics, metatranscriptomics and viromics to explore novel microbial interactions: towards a systems-level understanding of human microbiome.
    Bikel S; Valdez-Lara A; Cornejo-Granados F; Rico K; Canizales-Quinteros S; Soberón X; Del Pozo-Yauner L; Ochoa-Leyva A
    Comput Struct Biotechnol J; 2015; 13():390-401. PubMed ID: 26137199
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Application of meta-omics techniques to understand greenhouse gas emissions originating from ruminal metabolism.
    Wallace RJ; Snelling TJ; McCartney CA; Tapio I; Strozzi F
    Genet Sel Evol; 2017 Jan; 49(1):9. PubMed ID: 28093073
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Analysis of Microbial Functions in the Rhizosphere Using a Metabolic-Network Based Framework for Metagenomics Interpretation.
    Ofaim S; Ofek-Lalzar M; Sela N; Jinag J; Kashi Y; Minz D; Freilich S
    Front Microbiol; 2017; 8():1606. PubMed ID: 28878756
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Understanding and Designing the Strategies for the Microbe-Mediated Remediation of Environmental Contaminants Using Omics Approaches.
    Malla MA; Dubey A; Yadav S; Kumar A; Hashem A; Abd Allah EF
    Front Microbiol; 2018; 9():1132. PubMed ID: 29915565
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The rhizosphere microbiome: Significance in rhizoremediation of polyaromatic hydrocarbon contaminated soil.
    Kotoky R; Rajkumari J; Pandey P
    J Environ Manage; 2018 Jul; 217():858-870. PubMed ID: 29660711
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Metabolic network modeling of microbial communities.
    Biggs MB; Medlock GL; Kolling GL; Papin JA
    Wiley Interdiscip Rev Syst Biol Med; 2015; 7(5):317-34. PubMed ID: 26109480
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Multi -omics and metabolic modelling pipelines: challenges and tools for systems microbiology.
    Fondi M; Liò P
    Microbiol Res; 2015 Feb; 171():52-64. PubMed ID: 25644953
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Translating Omics to Food Microbiology.
    Walsh AM; Crispie F; Claesson MJ; Cotter PD
    Annu Rev Food Sci Technol; 2017 Feb; 8():113-134. PubMed ID: 28125344
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Model Microbial Consortia as Tools for Understanding Complex Microbial Communities.
    Haruta S; Yamamoto K
    Curr Genomics; 2018 Dec; 19(8):723-733. PubMed ID: 30532651
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Systems biology approaches towards predictive microbial ecology.
    Otwell AE; López García de Lomana A; Gibbons SM; Orellana MV; Baliga NS
    Environ Microbiol; 2018 Dec; 20(12):4197-4209. PubMed ID: 30106224
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.