These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 25750983)
1. Atomistic study of dynamics for metallic filament growth in conductive-bridge random access memory. Qin S; Liu Z; Zhang G; Zhang J; Sun Y; Wu H; Qian H; Yu Z Phys Chem Chem Phys; 2015 Apr; 17(14):8627-32. PubMed ID: 25750983 [TBL] [Abstract][Full Text] [Related]
2. Investigation on the Conductive Filament Growth Dynamics in Resistive Switching Memory via a Universal Monte Carlo Simulator. Li Y; Zhang M; Long S; Teng J; Liu Q; Lv H; Miranda E; Suñé J; Liu M Sci Rep; 2017 Sep; 7(1):11204. PubMed ID: 28894146 [TBL] [Abstract][Full Text] [Related]
3. Kinetic Monte Carlo simulations on electroforming in nanomanipulated conductive bridge random access memory devices. Li YC; Xu P; Lv YY; Fa W; Chen S Nanoscale; 2024 Jul; 16(28):13562-13570. PubMed ID: 38953142 [TBL] [Abstract][Full Text] [Related]
4. Conductive-bridging random access memory: challenges and opportunity for 3D architecture. Jana D; Roy S; Panja R; Dutta M; Rahaman SZ; Mahapatra R; Maikap S Nanoscale Res Lett; 2015; 10():188. PubMed ID: 25977660 [TBL] [Abstract][Full Text] [Related]
5. Embedded nanoparticle dynamics and their influence on switching behaviour of resistive memory devices. Tappertzhofen S; Hofmann S Nanoscale; 2017 Nov; 9(44):17494-17504. PubMed ID: 29109988 [TBL] [Abstract][Full Text] [Related]
6. Filament Growth and Resistive Switching in Hafnium Oxide Memristive Devices. Dirkmann S; Kaiser J; Wenger C; Mussenbrock T ACS Appl Mater Interfaces; 2018 May; 10(17):14857-14868. PubMed ID: 29601180 [TBL] [Abstract][Full Text] [Related]
7. Real-Time Observation of the Electrode-Size-Dependent Evolution Dynamics of the Conducting Filaments in a SiO Yuan F; Zhang Z; Liu C; Zhou F; Yau HM; Lu W; Qiu X; Wong HP; Dai J; Chai Y ACS Nano; 2017 Apr; 11(4):4097-4104. PubMed ID: 28319363 [TBL] [Abstract][Full Text] [Related]
8. Cluster-Type Filaments Induced by Doping in Low-Operation-Current Conductive Bridge Random Access Memory. Sun Y; Song C; Yin S; Qiao L; Wan Q; Liu J; Wang R; Zeng F; Pan F ACS Appl Mater Interfaces; 2020 Jul; 12(26):29481-29486. PubMed ID: 32490665 [TBL] [Abstract][Full Text] [Related]
9. The role of the local chemical environment of Ag on the resistive switching mechanism of conductive bridging random access memories. Souchier E; D'Acapito F; Noé P; Blaise P; Bernard M; Jousseaume V Phys Chem Chem Phys; 2015 Oct; 17(37):23931-7. PubMed ID: 26312954 [TBL] [Abstract][Full Text] [Related]
10. Silicon compatible Sn-based resistive switching memory. Sonde S; Chakrabarti B; Liu Y; Sasikumar K; Lin J; Stan L; Divan R; Ocola LE; Rosenmann D; Choudhury P; Ni K; Sankaranarayanan SKRS; Datta S; Guha S Nanoscale; 2018 May; 10(20):9441-9449. PubMed ID: 29663006 [TBL] [Abstract][Full Text] [Related]
11. Suppression of Filament Overgrowth in Conductive Bridge Random Access Memory by Ta Yu J; Xu X; Gong T; Luo Q; Dong D; Yuan P; Tai L; Yin J; Zhu X; Wu X; Lv H; Liu M Nanoscale Res Lett; 2019 Mar; 14(1):111. PubMed ID: 30923974 [TBL] [Abstract][Full Text] [Related]
12. Effect of dysprosium and lutetium metal buffer layers on the resistive switching characteristics of Cu-Sn alloy-based conductive-bridge random access memory. Vishwanath SK; Woo H; Jeon S Nanotechnology; 2018 Sep; 29(38):385207. PubMed ID: 29911987 [TBL] [Abstract][Full Text] [Related]
13. Anisotropic Magnetoresistance of Nano-conductive Filament in Co/HfO Li L; Liu Y; Teng J; Long S; Guo Q; Zhang M; Wu Y; Yu G; Liu Q; Lv H; Liu M Nanoscale Res Lett; 2017 Dec; 12(1):210. PubMed ID: 28335585 [TBL] [Abstract][Full Text] [Related]
14. Electro-Forming and Electro-Breaking of Nanoscale Ag Filaments for Conductive-Bridging Random-Access Memory Cell using Ag-Doped Polymer-Electrolyte between Pt Electrodes. Song MJ; Kwon KH; Park JG Sci Rep; 2017 Jun; 7(1):3065. PubMed ID: 28596546 [TBL] [Abstract][Full Text] [Related]
15. Confining Cation Injection to Enhance CBRAM Performance by Nanopore Graphene Layer. Zhao X; Liu S; Niu J; Liao L; Liu Q; Xiao X; Lv H; Long S; Banerjee W; Li W; Si S; Liu M Small; 2017 Sep; 13(35):. PubMed ID: 28234422 [TBL] [Abstract][Full Text] [Related]
16. Analytically and empirically consistent characterization of the resistive switching mechanism in a Ag conducting-bridge random-access memory device through a pseudo-liquid interpretation approach. Choi YJ; Bang S; Kim TH; Hong K; Kim S; Kim S; Cho S; Park BG Phys Chem Chem Phys; 2021 Dec; 23(48):27234-27243. PubMed ID: 34853837 [TBL] [Abstract][Full Text] [Related]
17. Rational Design on Controllable Cation Injection with Improved Conductive-Bridge Random Access Memory by Glancing Angle Deposition Technology toward Neuromorphic Application. Shih YC; Shen YC; Cheng YK; Chaudhary M; Yang TY; Yu YJ; Chueh YL ACS Appl Mater Interfaces; 2021 Nov; 13(46):55470-55480. PubMed ID: 34775743 [TBL] [Abstract][Full Text] [Related]
18. Oxygen Concentration Effect on Conductive Bridge Random Access Memory of InWZnO Thin Film. Hsu CC; Liu PT; Gan KJ; Ruan DB; Sze SM Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578520 [TBL] [Abstract][Full Text] [Related]
19. Guiding the Growth of a Conductive Filament by Nanoindentation To Improve Resistive Switching. Sun Y; Song C; Yin J; Chen X; Wan Q; Zeng F; Pan F ACS Appl Mater Interfaces; 2017 Oct; 9(39):34064-34070. PubMed ID: 28901743 [TBL] [Abstract][Full Text] [Related]
20. Nanoscopic structural rearrangements of the Cu-filament in conductive-bridge memories. Celano U; Giammaria G; Goux L; Belmonte A; Jurczak M; Vandervorst W Nanoscale; 2016 Jul; 8(29):13915-23. PubMed ID: 27441315 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]