These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

466 related articles for article (PubMed ID: 25751073)

  • 1. In situ atomic-scale observation of twinning-dominated deformation in nanoscale body-centred cubic tungsten.
    Wang J; Zeng Z; Weinberger CR; Zhang Z; Zhu T; Mao SX
    Nat Mater; 2015 Jun; 14(6):594-600. PubMed ID: 25751073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anti-twinning in nanoscale tungsten.
    Wang J; Zeng Z; Wen M; Wang Q; Chen D; Zhang Y; Wang P; Wang H; Zhang Z; Mao SX; Zhu T
    Sci Adv; 2020 Jun; 6(23):eaay2792. PubMed ID: 32537490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic-scale observation of nucleation- and growth-controlled deformation twinning in body-centered cubic nanocrystals.
    Zhong L; Zhang Y; Wang X; Zhu T; Mao SX
    Nat Commun; 2024 Jan; 15(1):560. PubMed ID: 38228646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition of Deformation Mechanisms in Single-Crystalline Metallic Nanowires.
    Yin S; Cheng G; Richter G; Gao H; Zhu Y
    ACS Nano; 2019 Aug; 13(8):9082-9090. PubMed ID: 31305984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unstable twin in body-centered cubic tungsten nanocrystals.
    Wang X; Wang J; He Y; Wang C; Zhong L; Mao SX
    Nat Commun; 2020 May; 11(1):2497. PubMed ID: 32427858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slip-activated surface creep with room-temperature super-elongation in metallic nanocrystals.
    Zhong L; Sansoz F; He Y; Wang C; Zhang Z; Mao SX
    Nat Mater; 2017 Apr; 16(4):439-445. PubMed ID: 27893723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible cyclic deformation mechanism of gold nanowires by twinning-detwinning transition evidenced from in situ TEM.
    Lee S; Im J; Yoo Y; Bitzek E; Kiener D; Richter G; Kim B; Oh SH
    Nat Commun; 2014; 5():3033. PubMed ID: 24398783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Origin of Deformation Twinning in bcc Tungsten and Molybdenum.
    Xiao J; Li S; Ma X; Gao J; Deng C; Wu Z; Zhu Y
    Phys Rev Lett; 2023 Sep; 131(13):136101. PubMed ID: 37832014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pseudo-Elasticity and Variable Electro-Conductivity Mediated by Size-Dependent Deformation Twinning in Molybdenum Nanocrystals.
    Peng H; Hou Y; Meng W; Zheng H; Zhao L; Zhang Y; Li K; Zhao P; Liu T; Jia S; Wang J
    Small; 2023 May; 19(21):e2206380. PubMed ID: 36828786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics.
    Wehrenberg CE; McGonegle D; Bolme C; Higginbotham A; Lazicki A; Lee HJ; Nagler B; Park HS; Remington BA; Rudd RE; Sliwa M; Suggit M; Swift D; Tavella F; Zepeda-Ruiz L; Wark JS
    Nature; 2017 Oct; 550(7677):496-499. PubMed ID: 29072261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dislocation "Bubble-Like-Effect" and the Ambient Temperature Super-plastic Elongation of Body-centred Cubic Single Crystalline Molybdenum.
    Lu Y; Xiang S; Xiao L; Wang L; Deng Q; Zhang Z; Han X
    Sci Rep; 2016 Mar; 6():22937. PubMed ID: 26956918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ observation of the atomic shuffles during the {
    He Y; Fang Z; Wang C; Wang G; Mao SX
    Nat Commun; 2024 Apr; 15(1):2994. PubMed ID: 38582808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discrete shear band plasticity through dislocation activities in body-centered cubic tungsten nanowires.
    Wang J; Wang Y; Cai W; Li J; Zhang Z; Mao SX
    Sci Rep; 2018 Mar; 8(1):4574. PubMed ID: 29545583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ atomic-scale observation of continuous and reversible lattice deformation beyond the elastic limit.
    Wang L; Liu P; Guan P; Yang M; Sun J; Cheng Y; Hirata A; Zhang Z; Ma E; Chen M; Han X
    Nat Commun; 2013; 4():2413. PubMed ID: 24022231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding dislocation mechanics at the mesoscale using phase field dislocation dynamics.
    Beyerlein IJ; Hunter A
    Philos Trans A Math Phys Eng Sci; 2016 Apr; 374(2066):. PubMed ID: 27002063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale ductile fracture and associated atomistic mechanisms in a body-centered cubic refractory metal.
    Lu Y; Chen Y; Zeng Y; Zhang Y; Kong D; Li X; Zhu T; Li X; Mao S; Zhang Z; Wang L; Han X
    Nat Commun; 2023 Sep; 14(1):5540. PubMed ID: 37684248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High resolution transmission electron microscope observation of zero-strain deformation twinning mechanisms in Ag.
    Liu L; Wang J; Gong SK; Mao SX
    Phys Rev Lett; 2011 Apr; 106(17):175504. PubMed ID: 21635047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic-Scale In Situ Observations of Reversible Phase Transformation Assisted Twinning in a CrCoNi Medium-Entropy Alloy.
    Chu S; Zhang F; Chen D; Chen M; Liu P
    Nano Lett; 2024 Mar; 24(12):3624-3630. PubMed ID: 38421603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dislocation kink-pair energetics and pencil glide in body-centered-cubic crystals.
    Ngan AH; Wen M
    Phys Rev Lett; 2001 Aug; 87(7):075505. PubMed ID: 11497901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size-dependent dislocation-twin interactions.
    Wang J; Cao G; Zhang Z; Sansoz F
    Nanoscale; 2019 Jul; 11(26):12672-12679. PubMed ID: 31237593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.