These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 25751126)
1. Magnetic high throughput screening system for the development of nano-sized molecularly imprinted polymers for controlled delivery of curcumin. Piletska EV; Abd BH; Krakowiak AS; Parmar A; Pink DL; Wall KS; Wharton L; Moczko E; Whitcombe MJ; Karim K; Piletsky SA Analyst; 2015 May; 140(9):3113-20. PubMed ID: 25751126 [TBL] [Abstract][Full Text] [Related]
2. Nanoporous imprinted polymers (nanoMIPs) for controlled release of cancer drug. Korde BA; Mankar JS; Phule S; Krupadam RJ Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():222-230. PubMed ID: 30889694 [TBL] [Abstract][Full Text] [Related]
3. Cyproterone synthesis, recognition and controlled release by molecularly imprinted nanoparticle. Asadi E; Azodi-Deilami S; Abdouss M; Khaghani S Appl Biochem Biotechnol; 2012 Aug; 167(7):2076-87. PubMed ID: 22669687 [TBL] [Abstract][Full Text] [Related]
4. The syntheses and characterization of molecularly imprinted polymers for the controlled release of bromhexine. Azodi-Deilami S; Abdouss M; Javanbakht M Appl Biochem Biotechnol; 2011 May; 164(2):133-47. PubMed ID: 21076945 [TBL] [Abstract][Full Text] [Related]
5. Development of a pH-responsive imprinted polymer for diclofenac and study of its binding properties in organic and aqueous media. Mohajeri SA; Malaekeh-Nikouei B; Sadegh H Drug Dev Ind Pharm; 2012 May; 38(5):616-22. PubMed ID: 21978326 [TBL] [Abstract][Full Text] [Related]
6. Water-compatible silica sol-gel molecularly imprinted polymer as a potential delivery system for the controlled release of salicylic acid. Li B; Xu J; Hall AJ; Haupt K; Tse Sum Bui B J Mol Recognit; 2014 Sep; 27(9):559-65. PubMed ID: 25042710 [TBL] [Abstract][Full Text] [Related]
7. Spherical molecularly imprinted polymers (SMIPs) via a novel precipitation polymerization in the controlled delivery of sulfasalazine. Puoci F; Iemma F; Muzzalupo R; Spizzirri UG; Trombino S; Cassano R; Picci N Macromol Biosci; 2004 Jan; 4(1):22-6. PubMed ID: 15468283 [TBL] [Abstract][Full Text] [Related]
8. Magnetic molecularly imprinted polymer for the isolation and detection of biotin and biotinylated biomolecules. Ben Aissa A; Herrera-Chacon A; Pupin RR; Sotomayor MDPT; Pividori MI Biosens Bioelectron; 2017 Feb; 88():101-108. PubMed ID: 27544786 [TBL] [Abstract][Full Text] [Related]
9. Molecular imprinted polymers as drug delivery vehicles. Zaidi SA Drug Deliv; 2016 Sep; 23(7):2262-2271. PubMed ID: 25317753 [TBL] [Abstract][Full Text] [Related]
10. Preparation and study of tramadol imprinted micro-and nanoparticles by precipitation polymerization: microwave irradiation and conventional heating method. Seifi M; Hassanpour Moghadam M; Hadizadeh F; Ali-Asgari S; Aboli J; Mohajeri SA Int J Pharm; 2014 Aug; 471(1-2):37-44. PubMed ID: 24792981 [TBL] [Abstract][Full Text] [Related]
11. Preparation of magnetic TNT-imprinted polymer nanoparticles and their accumulation onto magnetic carbon paste electrode for TNT determination. Alizadeh T Biosens Bioelectron; 2014 Nov; 61():532-40. PubMed ID: 24951924 [TBL] [Abstract][Full Text] [Related]
12. Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo. Gou M; Men K; Shi H; Xiang M; Zhang J; Song J; Long J; Wan Y; Luo F; Zhao X; Qian Z Nanoscale; 2011 Apr; 3(4):1558-67. PubMed ID: 21283869 [TBL] [Abstract][Full Text] [Related]
13. Molecularly imprinted polymers as the future drug delivery devices. Luliński P Acta Pol Pharm; 2013; 70(4):601-9. PubMed ID: 23923384 [TBL] [Abstract][Full Text] [Related]
14. Design and synthesis of molecularly imprinted polypyrrole based on nanoreactor SBA-15 for recognition of ascorbic acid. Mehdinia A; Aziz-Zanjani MO; Ahmadifar M; Jabbari A Biosens Bioelectron; 2013 Jan; 39(1):88-93. PubMed ID: 22871516 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of novel biodegradable methoxy poly(ethylene glycol)-zein micelles for effective delivery of curcumin. Podaralla S; Averineni R; Alqahtani M; Perumal O Mol Pharm; 2012 Sep; 9(9):2778-86. PubMed ID: 22770552 [TBL] [Abstract][Full Text] [Related]
16. Preparation of magnetic molecularly imprinted polymer for selective recognition of resveratrol in wine. Chen FF; Xie XY; Shi YP J Chromatogr A; 2013 Jul; 1300():112-8. PubMed ID: 23481473 [TBL] [Abstract][Full Text] [Related]
17. The use of coenzyme Q0 as a template in the development of a molecularly imprinted polymer for the selective recognition of coenzyme Q10. Contin M; Flor S; Martinefski M; Lucangioli S; Tripodi V Anal Chim Acta; 2014 Jan; 807():67-74. PubMed ID: 24356222 [TBL] [Abstract][Full Text] [Related]
18. Comb-like amphiphilic copolymers bearing acetal-functionalized backbones with the ability of acid-triggered hydrophobic-to-hydrophilic transition as effective nanocarriers for intracellular release of curcumin. Zhao J; Wang H; Liu J; Deng L; Liu J; Dong A; Zhang J Biomacromolecules; 2013 Nov; 14(11):3973-84. PubMed ID: 24107101 [TBL] [Abstract][Full Text] [Related]
19. Molecularly imprinted polymer nanocarriers for sustained release of erythromycin. Kempe H; Parareda Pujolràs A; Kempe M Pharm Res; 2015 Feb; 32(2):375-88. PubMed ID: 25103333 [TBL] [Abstract][Full Text] [Related]
20. Design of molecular imprinted polymers compatible with aqueous environment. Piletska EV; Guerreiro AR; Romero-Guerra M; Chianella I; Turner AP; Piletsky SA Anal Chim Acta; 2008 Jan; 607(1):54-60. PubMed ID: 18155410 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]