These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 25751135)

  • 1. Quantum-size effects and thermal response of anti-Kramer-Pesch vortex core.
    Chen Y; Hong-Yu W; Peeters FM; Shanenko AA
    J Phys Condens Matter; 2015 Apr; 27(12):125701. PubMed ID: 25751135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low temperature limit of the vortex core radius and the kramer-pesch effect in NbSe2.
    Miller RI; Kiefl RF; Brewer JH; Chakhalian J; Dunsiger S; Morris GD; Sonier JE; MacFarlane WA
    Phys Rev Lett; 2000 Aug; 85(7):1540-3. PubMed ID: 10970549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum cascades in nano-engineered superconductors: geometrical, thermal and paramagnetic effects.
    Chen Y; Shanenko AA; Croitoru MD; Peeters FM
    J Phys Condens Matter; 2012 Jul; 24(26):265702. PubMed ID: 22677892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superconducting nanowires: quantum confinement and spatially dependent Hartree-Fock potential.
    Chen Y; Croitoru MD; Shanenko AA; Peeters FM
    J Phys Condens Matter; 2009 Oct; 21(43):435701. PubMed ID: 21832443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum size effect on the paramagnetic critical field in free-standing superconducting nanofilms.
    Wójcik P; Zegrodnik M
    J Phys Condens Matter; 2014 Nov; 26(45):455302. PubMed ID: 25318561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kramer-Pesch approximation for analyzing field-angle-resolved measurements made in unconventional superconductors: a calculation of the zero-energy density of states.
    Nagai Y; Hayashi N
    Phys Rev Lett; 2008 Aug; 101(9):097001. PubMed ID: 18851639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-Abelian statistics of half-quantum vortices in p-wave superconductors.
    Ivanov DA
    Phys Rev Lett; 2001 Jan; 86(2):268-71. PubMed ID: 11177808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal dissipation in quantum turbulence.
    Kobayashi M; Tsubota M
    Phys Rev Lett; 2006 Oct; 97(14):145301. PubMed ID: 17155265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic structure of multiquantum giant vortex states in mesoscopic superconducting disks.
    Tanaka K; Robel I; Jankó B
    Proc Natl Acad Sci U S A; 2002 Apr; 99(8):5233-6. PubMed ID: 16578872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Friedel Oscillations of Vortex Bound States under Extreme Quantum Limit in KCa_{2}Fe_{4}As_{4}F_{2}.
    Chen X; Duan W; Fan X; Hong W; Chen K; Yang H; Li S; Luo H; Wen HH
    Phys Rev Lett; 2021 Jun; 126(25):257002. PubMed ID: 34241500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New Andreev-type states in superconducting nanowires.
    Shanenko AA; Croitoru MD; Mints RG; Peeters FM
    Phys Rev Lett; 2007 Aug; 99(6):067007. PubMed ID: 17930861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum dynamics of a single vortex.
    Wallraff A; Lukashenko A; Lisenfeld J; Kemp A; Fistul MV; Koval Y; Ustinov AV
    Nature; 2003 Sep; 425(6954):155-8. PubMed ID: 12968173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observation of Caroli-de Gennes-Matricon Vortex States in YBa_{2}Cu_{3}O_{7-δ}.
    Berthod C; Maggio-Aprile I; Bruér J; Erb A; Renner C
    Phys Rev Lett; 2017 Dec; 119(23):237001. PubMed ID: 29286696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Field-induced p-wave superconducting state of mesoscopic systems.
    Huo JW; Chen WQ; Raghu S; Zhang FC
    Phys Rev Lett; 2012 Jun; 108(25):257002. PubMed ID: 23004642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A method of studying the Bogoliubov-de Gennes equations for the superconducting vortex lattice state.
    Han Q
    J Phys Condens Matter; 2010 Jan; 22(3):035702. PubMed ID: 21386295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microscopic structure of a vortex line in a dilute superfluid fermi gas.
    Nygaard N; Bruun GM; Clark CW; Feder DL
    Phys Rev Lett; 2003 May; 90(21):210402. PubMed ID: 12786541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Friedel oscillation in charge profile and position dependent screening around a superconducting vortex core.
    Machida M; Koyama T
    Phys Rev Lett; 2003 Feb; 90(7):077003. PubMed ID: 12633266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fourfold structure of vortex-core states in Bi2Sr2CaCu2O8+delta.
    Levy G; Kugler M; Manuel AA; Fischer O; Li M
    Phys Rev Lett; 2005 Dec; 95(25):257005. PubMed ID: 16384499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of nanoholes on the vortex core fermion spectrum and heat transport in p-wave superconductors.
    Rosenstein B; Shapiro I; Shapiro BY
    J Phys Condens Matter; 2013 Feb; 25(7):075701. PubMed ID: 23327830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of thermal fluctuations on uniform and nonuniform superconducting rings according to the Ginzburg-Landau and the Kramer-Watts-Tobin models.
    Berger J
    J Phys Condens Matter; 2011 Jun; 23(22):225701. PubMed ID: 21572221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.