These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 25751507)

  • 41. Concentration of Bioactive Compounds from Elderberry (Sambucus nigra L.) Juice by Nanofiltration Membranes.
    Tundis R; Loizzo MR; Bonesi M; Sicari V; Ursino C; Manfredi I; Conidi C; Figoli A; Cassano A
    Plant Foods Hum Nutr; 2018 Dec; 73(4):336-343. PubMed ID: 30090973
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Extending the life-cycle of reverse osmosis membranes: A review.
    Coutinho de Paula E; Amaral MCS
    Waste Manag Res; 2017 May; 35(5):456-470. PubMed ID: 28097920
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of clarification and filtration processes on the removal of fungicide residues in red wines (var. Monastrell).
    Fernández MJ; Oliva J; Barba A; Cámara MA
    J Agric Food Chem; 2005 Jul; 53(15):6156-61. PubMed ID: 16029011
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mass diffusion-based separation of sugars in a microfluidic contactor with nanofiltration membranes.
    Kolfschoten RC; Janssen AE; Boom RM
    J Sep Sci; 2011 Jun; 34(11):1338-46. PubMed ID: 21495190
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Antioxidant activity and phenolic compounds in organic red wine using different winemaking techniques.
    Mulero J; Zafrilla P; Cayuela JM; Martínez-Cachá A; Pardo F
    J Food Sci; 2011 Apr; 76(3):C436-40. PubMed ID: 21535811
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Towards integral utilization of grape pomace from winemaking process: A review.
    Beres C; Costa GNS; Cabezudo I; da Silva-James NK; Teles ASC; Cruz APG; Mellinger-Silva C; Tonon RV; Cabral LMC; Freitas SP
    Waste Manag; 2017 Oct; 68():581-594. PubMed ID: 28734610
    [TBL] [Abstract][Full Text] [Related]  

  • 47. How electrodialysis configuration influences acid whey deacidification and membrane scaling.
    Dufton G; Mikhaylin S; Gaaloul S; Bazinet L
    J Dairy Sci; 2018 Sep; 101(9):7833-7850. PubMed ID: 29935834
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Distinctive characteristics of Madeira wine regarding its traditional winemaking and modern analytical methodologies.
    Perestrelo R; Albuquerque F; Rocha SM; Câmara JS
    Adv Food Nutr Res; 2011; 63():207-49. PubMed ID: 21867896
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Impact of must sugar reduction by membrane applications on volatile composition of Verdejo wines.
    Mihnea M; González-Sanjosé ML; Ortega-Heras M; Pérez-Magariño S; García-Martin N; Palacio L; Prádanos P; Hernández A
    J Agric Food Chem; 2012 Jul; 60(28):7050-63. PubMed ID: 22703609
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Wine distillates: practical operating recipe formulation for stills.
    Osorio D; Pérez-Correa JR; Biegler LT; Agosin E
    J Agric Food Chem; 2005 Aug; 53(16):6326-31. PubMed ID: 16076114
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fouling of reverse osmosis and nanofiltration membranes by dairy industry effluents.
    Turan M; Ates A; Inanc B
    Water Sci Technol; 2002; 45(12):355-60. PubMed ID: 12201123
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Applicability of Composite Magnetic Membranes in Separation Processes of Gaseous and Liquid Mixtures-A Review.
    Jakubski Ł; Dudek G; Turczyn R
    Membranes (Basel); 2023 Mar; 13(4):. PubMed ID: 37103811
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Phenolic content and antioxidant activity of Primitivo wine: comparison among winemaking technologies.
    Baiano A; Terracone C; Gambacorta G; La Notte E
    J Food Sci; 2009 Apr; 74(3):C258-67. PubMed ID: 19397711
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Achieving very low mercury levels in refinery wastewater by membrane filtration.
    Urgun-Demirtas M; Benda PL; Gillenwater PS; Negri MC; Xiong H; Snyder SW
    J Hazard Mater; 2012 May; 215-216():98-107. PubMed ID: 22410725
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Process efficiency of casein separation from milk using polymeric spiral-wound microfiltration membranes.
    Mercier-Bouchard D; Benoit S; Doyen A; Britten M; Pouliot Y
    J Dairy Sci; 2017 Nov; 100(11):8838-8848. PubMed ID: 28843690
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Removal of Cd(II) ions from aqueous solution and industrial effluent using reverse osmosis and nanofiltration membranes.
    Kheriji J; Tabassi D; Hamrouni B
    Water Sci Technol; 2015; 72(7):1206-16. PubMed ID: 26398037
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Influence of winemaking practices on the concentration of rare earth elements in white wines studied by inductively coupled plasma mass spectrometry.
    Rossano EC; Szilágyi Z; Malorni A; Pocsfalvi G
    J Agric Food Chem; 2007 Jan; 55(2):311-7. PubMed ID: 17227059
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electrodialysis with bipolar membranes for sustainable development.
    Huang C; Xu T
    Environ Sci Technol; 2006 Sep; 40(17):5233-43. PubMed ID: 16999094
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Use of fouling resistant nanofiltration and reverse osmosis membranes for dyeing wastewater effluent treatment.
    Myung SW; Choi IH; Lee SH; Kim IC; Lee KH
    Water Sci Technol; 2005; 51(6-7):159-64. PubMed ID: 16003974
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Improving downstream processes to recover tartaric acid, tartrate and nutrients from vinasses and formulation of inexpensive fermentative broths for xylitol production.
    Salgado JM; Rodríguez N; Cortés S; Domínguez JM
    J Sci Food Agric; 2010 Oct; 90(13):2168-77. PubMed ID: 20629106
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.