BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 25751531)

  • 1. Somatostatin cells regulate sensory response fidelity via subtractive inhibition in olfactory cortex.
    Sturgill JF; Isaacson JS
    Nat Neurosci; 2015 Apr; 18(4):531-5. PubMed ID: 25751531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition by Somatostatin Interneurons in Olfactory Cortex.
    Large AM; Kunz NA; Mielo SL; Oswald AM
    Front Neural Circuits; 2016; 10():62. PubMed ID: 27582691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous activity in the piriform cortex extends the dynamic range of cortical odor coding.
    Tantirigama ML; Huang HH; Bekkers JM
    Proc Natl Acad Sci U S A; 2017 Feb; 114(9):2407-2412. PubMed ID: 28196887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optogenetic Stimulation of Lateral Amygdala Input to Posterior Piriform Cortex Modulates Single-Unit and Ensemble Odor Processing.
    Sadrian B; Wilson DA
    Front Neural Circuits; 2015; 9():81. PubMed ID: 26733819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complementary codes for odor identity and intensity in olfactory cortex.
    Bolding KA; Franks KM
    Elife; 2017 Apr; 6():. PubMed ID: 28379135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response Patterns of GABAergic Neurons in the Anterior Piriform Cortex of Awake Mice.
    Hu R; Zhang J; Luo M; Hu J
    Cereb Cortex; 2017 Jun; 27(6):3110-3124. PubMed ID: 27252353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Network-Level Control of Frequency Tuning in Auditory Cortex.
    Kato HK; Asinof SK; Isaacson JS
    Neuron; 2017 Jul; 95(2):412-423.e4. PubMed ID: 28689982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Target-specific control of piriform cortical output via distinct inhibitory circuits.
    Jiang HH; Guo A; Chiu A; Li H; Lai CSW; Lau CG
    FASEB J; 2021 Oct; 35(10):e21944. PubMed ID: 34569087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Odor identity coding by distributed ensembles of neurons in the mouse olfactory cortex.
    Roland B; Deneux T; Franks KM; Bathellier B; Fleischmann A
    Elife; 2017 May; 6():. PubMed ID: 28489003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast and slow feedforward inhibitory circuits for cortical odor processing.
    Suzuki N; Tantirigama MLS; Aung KP; Huang HHY; Bekkers JM
    Elife; 2022 Mar; 11():. PubMed ID: 35297763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The maturational characteristics of the GABA input in the anterior piriform cortex may also contribute to the rapid learning of the maternal odor during the sensitive period.
    Oruro EM; Pardo GVE; Lucion AB; Calcagnotto ME; Idiart MAP
    Learn Mem; 2020 Dec; 27(12):493-502. PubMed ID: 33199474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential inhibition of pyramidal cells and inhibitory interneurons along the rostrocaudal axis of anterior piriform cortex.
    Large AM; Vogler NW; Canto-Bustos M; Friason FK; Schick P; Oswald AM
    Proc Natl Acad Sci U S A; 2018 Aug; 115(34):E8067-E8076. PubMed ID: 30087186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A transformation from temporal to ensemble coding in a model of piriform cortex.
    Stern M; Bolding KA; Abbott LF; Franks KM
    Elife; 2018 Mar; 7():. PubMed ID: 29595470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Matching of feedback inhibition with excitation ensures fidelity of information flow in the anterior piriform cortex.
    Sheridan DC; Hughes AR; Erdélyi F; Szabó G; Hentges ST; Schoppa NE
    Neuroscience; 2014 Sep; 275():519-30. PubMed ID: 24969131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Balanced feedforward inhibition and dominant recurrent inhibition in olfactory cortex.
    Large AM; Vogler NW; Mielo S; Oswald AM
    Proc Natl Acad Sci U S A; 2016 Feb; 113(8):2276-81. PubMed ID: 26858458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel interneuronal network in the mouse posterior piriform cortex.
    Zhang C; Szabó G; Erdélyi F; Rose JD; Sun QQ
    J Comp Neurol; 2006 Dec; 499(6):1000-15. PubMed ID: 17072835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CB1 Receptors in the Anterior Piriform Cortex Control Odor Preference Memory.
    Terral G; Busquets-Garcia A; Varilh M; Achicallende S; Cannich A; Bellocchio L; Bonilla-Del Río I; Massa F; Puente N; Soria-Gomez E; Grandes P; Ferreira G; Marsicano G
    Curr Biol; 2019 Aug; 29(15):2455-2464.e5. PubMed ID: 31327715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Upstream γ-synchronization enhances odor processing in downstream neurons.
    Dalal T; Haddad R
    Cell Rep; 2022 Apr; 39(3):110693. PubMed ID: 35443179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Odor Identification in Rats: Behavioral and Electrophysiological Evidence of Learned Olfactory-Auditory Associations.
    Olofsson JK; Zhou G; East BS; Zelano C; Wilson DA
    eNeuro; 2019; 6(4):. PubMed ID: 31362955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Odor representations in mammalian cortical circuits.
    Isaacson JS
    Curr Opin Neurobiol; 2010 Jun; 20(3):328-31. PubMed ID: 20207132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.