These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 25751579)
81. Synthesis and biological evaluation of novel amprenavir-based P1-substituted bi-aryl derivatives as ultra-potent HIV-1 protease inhibitors. Yan J; Huang N; Li S; Yang LM; Xing W; Zheng YT; Hu Y Bioorg Med Chem Lett; 2012 Mar; 22(5):1976-9. PubMed ID: 22306123 [TBL] [Abstract][Full Text] [Related]
82. A kinetic model for comparing proteolytic processing activity and inhibitor resistance potential of mutant HIV-1 proteases. Tang J; Hartsuck JA FEBS Lett; 1995 Jun; 367(2):112-6. PubMed ID: 7796905 [TBL] [Abstract][Full Text] [Related]
83. Induced maturation of human immunodeficiency virus. Mattei S; Anders M; Konvalinka J; Kräusslich HG; Briggs JA; Müller B J Virol; 2014 Dec; 88(23):13722-31. PubMed ID: 25231305 [TBL] [Abstract][Full Text] [Related]
84. Gag-Pol processing during HIV-1 virion maturation: a systems biology approach. Könnyű B; Sadiq SK; Turányi T; Hírmondó R; Müller B; Kräusslich HG; Coveney PV; Müller V PLoS Comput Biol; 2013; 9(6):e1003103. PubMed ID: 23754941 [TBL] [Abstract][Full Text] [Related]
85. The fatty acid composition of diacylglycerols determines local signaling patterns. Nadler A; Reither G; Feng S; Stein F; Reither S; Müller R; Schultz C Angew Chem Int Ed Engl; 2013 Jun; 52(24):6330-4. PubMed ID: 23720390 [No Abstract] [Full Text] [Related]
86. Light-controlled tools. Brieke C; Rohrbach F; Gottschalk A; Mayer G; Heckel A Angew Chem Int Ed Engl; 2012 Aug; 51(34):8446-76. PubMed ID: 22829531 [TBL] [Abstract][Full Text] [Related]
88. Cell-to-cell transfer of HIV-1 via virological synapses leads to endosomal virion maturation that activates viral membrane fusion. Dale BM; McNerney GP; Thompson DL; Hubner W; de Los Reyes K; Chuang FY; Huser T; Chen BK Cell Host Microbe; 2011 Dec; 10(6):551-62. PubMed ID: 22177560 [TBL] [Abstract][Full Text] [Related]
89. Current and Novel Inhibitors of HIV Protease. Pokorná J; Machala L; Rezáčová P; Konvalinka J Viruses; 2009 Dec; 1(3):1209-39. PubMed ID: 21994591 [TBL] [Abstract][Full Text] [Related]
90. Recent advances in the photochemical control of protein function. Riggsbee CW; Deiters A Trends Biotechnol; 2010 Sep; 28(9):468-75. PubMed ID: 20667607 [TBL] [Abstract][Full Text] [Related]
92. Light-activated RNA interference using double-stranded siRNA precursors modified using a remarkable regiospecificity of diazo-based photolabile groups. Shah S; Jain PK; Kala A; Karunakaran D; Friedman SH Nucleic Acids Res; 2009 Jul; 37(13):4508-17. PubMed ID: 19477960 [TBL] [Abstract][Full Text] [Related]
93. Illuminating the chemistry of life: design, synthesis, and applications of "caged" and related photoresponsive compounds. Lee HM; Larson DR; Lawrence DS ACS Chem Biol; 2009 Jun; 4(6):409-27. PubMed ID: 19298086 [TBL] [Abstract][Full Text] [Related]
94. Light-mediated liberation of enzymatic activity: "small molecule" caged protein equivalents. Li H; Hah JM; Lawrence DS J Am Chem Soc; 2008 Aug; 130(32):10474-5. PubMed ID: 18642802 [TBL] [Abstract][Full Text] [Related]
95. Enzymatic and structural analysis of the I47A mutation contributing to the reduced susceptibility to HIV protease inhibitor lopinavir. Sasková KG; Kozísek M; Lepsík M; Brynda J; Rezácová P; Václavíková J; Kagan RM; Machala L; Konvalinka J Protein Sci; 2008 Sep; 17(9):1555-64. PubMed ID: 18560011 [TBL] [Abstract][Full Text] [Related]