These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
361 related articles for article (PubMed ID: 25752062)
1. [Monitoring the thermal plume from coastal nuclear power plant using satellite remote sensing data: modeling, and validation]. Zhu L; Zhao LM; Wang Q; Zhang AL; Wu CQ; Li JG; Shi JX Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Nov; 34(11):3079-84. PubMed ID: 25752062 [TBL] [Abstract][Full Text] [Related]
2. Application of satellite infrared data for mapping of thermal plume contamination in coastal ecosystem of Korea. Ahn YH; Shanmugam P; Lee JH; Kang YQ Mar Environ Res; 2006 Mar; 61(2):186-201. PubMed ID: 16256190 [TBL] [Abstract][Full Text] [Related]
3. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States. Paciorek CJ; Liu Y; Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153 [TBL] [Abstract][Full Text] [Related]
4. [Error analysis of the land surface temperature retrieval using HJ-1B thermal infrared remote sensing data]. Zhao LM; Yu T; Tian QJ; Gu XF; Li JG; Wan W Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Dec; 30(12):3359-62. PubMed ID: 21322240 [TBL] [Abstract][Full Text] [Related]
5. A novel technique to monitor thermal discharges using thermal infrared imaging. Muthulakshmi AL; Natesan U; Ferrer VA; Deepthi K; Venugopalan VP; Narasimhan SV Environ Sci Process Impacts; 2013 Sep; 15(9):1729-34. PubMed ID: 23839171 [TBL] [Abstract][Full Text] [Related]
6. Application of remote sensing techniques for monitoring the thermal pollution of cooling-water discharge from nuclear power plant. Chen C; Shi P; Mao Q J Environ Sci Health A Tox Hazard Subst Environ Eng; 2003 Aug; 38(8):1659-68. PubMed ID: 12929815 [TBL] [Abstract][Full Text] [Related]
7. Integrated monitoring and prediction of thermal discharge from nuclear power plants using satellite, UAV, and numerical simulation. Wang L; Li G; Shi H; Zhu J; Zhan C; Zhang X; Wang Q Environ Monit Assess; 2024 Jul; 196(8):736. PubMed ID: 39009747 [TBL] [Abstract][Full Text] [Related]
8. Development of MODIS data-based algorithm for retrieving sea surface temperature in coastal waters. Wang J; Deng Z Environ Monit Assess; 2017 Jun; 189(6):286. PubMed ID: 28536910 [TBL] [Abstract][Full Text] [Related]
9. Development of a Cost-Effective Airborne Remote Sensing System for Coastal Monitoring. Kim DJ; Jung J; Kang KM; Kim SH; Xu Z; Hensley S; Swan A; Duersch M Sensors (Basel); 2015 Sep; 15(10):25366-84. PubMed ID: 26437413 [TBL] [Abstract][Full Text] [Related]
10. Multiplatform optical monitoring of eutrophication in temporally and spatially variable lakes. Vos RJ; Hakvoort JH; Jordans RW; Ibelings BW Sci Total Environ; 2003 Aug; 312(1-3):221-43. PubMed ID: 12873412 [TBL] [Abstract][Full Text] [Related]
11. [Evaluation on the atmospheric correction methods for water color remote sensing by using HJ-1A/1B CCD image-taking Poyang Lake in China as a case]. Zeng Q; Zhao Y; Tian LQ; Chen XL Guang Pu Xue Yu Guang Pu Fen Xi; 2013 May; 33(5):1320-6. PubMed ID: 23905344 [TBL] [Abstract][Full Text] [Related]
12. [Validation of HJ-1B thermal infrared channels onboard radiometric calibration based on spectral response differences]. Liu L; Fu QY; Shi TT; Wang AC; Zhang XW Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Aug; 34(8):2212-7. PubMed ID: 25474964 [TBL] [Abstract][Full Text] [Related]
13. [An Improved DDV Method to Retrieve AOT for HJ CCD Image in Typical Mountainous Areas]. Zhao ZQ; Li AN; Bian JH; Huang CQ Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jun; 35(6):1479-87. PubMed ID: 26601351 [TBL] [Abstract][Full Text] [Related]
14. Application of satellite remote sensing in monitoring dissolved oxygen variabilities: A case study for coastal waters in Korea. Kim YH; Son S; Kim HC; Kim B; Park YG; Nam J; Ryu J Environ Int; 2020 Jan; 134():105301. PubMed ID: 31743805 [TBL] [Abstract][Full Text] [Related]
15. Development and application of an aerosol screening model for size-resolved urban aerosols. Stanier CO; Lee SR; Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039 [TBL] [Abstract][Full Text] [Related]
16. Correction of Thin Cirrus Absorption Effects in Landsat 8 Thermal Infrared Sensor Images Using the Operational Land Imager Cirrus Band on the Same Satellite Platform. Gao BC; Li RR; Yang Y; Anderson M Sensors (Basel); 2024 Jul; 24(14):. PubMed ID: 39066094 [TBL] [Abstract][Full Text] [Related]
17. On applications of remote sensing for environmental monitoring. Spitzer D Environ Monit Assess; 1986 Nov; 7(3):263-71. PubMed ID: 24253673 [TBL] [Abstract][Full Text] [Related]
18. Downscaling hydrodynamics features to depict causes of major productivity of Sicilian-Maltese area and implications for resource management. Capodici F; Ciraolo G; Cosoli S; Maltese A; Mangano MC; SarĂ G Sci Total Environ; 2018 Jul; 628-629():815-825. PubMed ID: 29455131 [TBL] [Abstract][Full Text] [Related]
19. Combining Remote Temperature Sensing with in-Situ Sensing to Track Marine/Freshwater Mixing Dynamics. McCaul M; Barland J; Cleary J; Cahalane C; McCarthy T; Diamond D Sensors (Basel); 2016 Aug; 16(9):. PubMed ID: 27589770 [TBL] [Abstract][Full Text] [Related]
20. [The progress in retrieving land surface temperature based on thermal infrared and microwave remote sensing technologies]. Zhang JH; Li X; Yao FM; Li XH Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Aug; 29(8):2103-7. PubMed ID: 19839318 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]